Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 29687 by ajfour last updated on 11/Feb/18

Commented by ajfour last updated on 11/Feb/18

Find the final velocity gained by a  tank of mass M, initially completely  filled with water and at rest, as it  slips on a frictionless ground owing  to a small opening at its base of  radius a, through which it drains  out. (Assume density of water 𝛒).

$${Find}\:{the}\:{final}\:{velocity}\:{gained}\:{by}\:{a} \\ $$$${tank}\:{of}\:{mass}\:{M},\:{initially}\:{completely} \\ $$$${filled}\:{with}\:{water}\:{and}\:{at}\:{rest},\:{as}\:{it} \\ $$$${slips}\:{on}\:{a}\:{frictionless}\:{ground}\:{owing} \\ $$$${to}\:{a}\:{small}\:{opening}\:{at}\:{its}\:{base}\:{of} \\ $$$${radius}\:{a},\:{through}\:{which}\:{it}\:{drains} \\ $$$${out}.\:\left({Assume}\:{density}\:{of}\:{water}\:\boldsymbol{\rho}\right). \\ $$

Commented by 803jaideep@gmail.com last updated on 11/Feb/18

isnt area of hole given?

$$\mathrm{isnt}\:\mathrm{area}\:\mathrm{of}\:\mathrm{hole}\:\mathrm{given}? \\ $$

Commented by ajfour last updated on 11/Feb/18

yes Ο€a^2   (please read question again).

$${yes}\:\pi{a}^{\mathrm{2}} \:\:\left({please}\:{read}\:{question}\:{again}\right). \\ $$

Commented by ajfour last updated on 11/Feb/18

whats the final speed of tank  by the time y→ 0 .

$${whats}\:{the}\:{final}\:{speed}\:{of}\:{tank} \\ $$$${by}\:{the}\:{time}\:{y}\rightarrow\:\mathrm{0}\:. \\ $$

Answered by mrW2 last updated on 12/Feb/18

M_W =mass of water at begin=Ο€R^2 hρ  at water depth y:  total mass: m=M+M_W (y/h)  β‡’(dm/dt)=(M_W /h)Γ—(dy/dt)  (relative) speed of outgoing water:  v=(√(2gy))    letβ€²s say speed of tank=u  βˆ’v(dm/dt)=m(du/dt)  βˆ’vΓ—(M_W /h)Γ—(dy/dt)=m(du/dy)Γ—(dy/dt)  βˆ’(M_W /h)v=m(du/dy)  βˆ’(M_W /h)(√(2gy))=(M+(M_W /h)y)(du/dy)  βˆ’(M_W /h)Γ—((√(2gy))/(M+(M_W /h)y)) dy=du  βˆ’(√(2g))Γ—((√y)/((((hM)/M_W )+y))) dy=du  with k=((hM)/M_W )  βˆ’(√(2g))Γ—βˆ«_h ^( 0) ((√y)/((k+y))) dy=∫_0 ^( u_(max) ) du  (√(2g))Γ—2(√k)[(√(y/k))βˆ’tan^(βˆ’1) (√(y/k))]_0 ^h =u_(max)   u_(max) =2(√(2gk))((√(h/k))βˆ’tan^(βˆ’1) (√(h/k)))  u_(max) =2(√((2ghM)/M_W ))((√(M_W /M))βˆ’tan^(βˆ’1) (√(M_W /M)))  with Ξ»=(M_W /M)  β‡’u_(max) =2(√((2gh)/Ξ»))((√λ)βˆ’tan^(βˆ’1) (√λ))    Example: Ξ»=(M_W /M)=5, h=1 m  β‡’u_(max) =2(√((20)/5))((√5)βˆ’tan^(βˆ’1) (√5))=4.3 m/s  ====================  u(y)=2(√(2gk))((√(h/k))βˆ’(√(y/k))βˆ’tan^(βˆ’1) (√(h/k))+tan^(βˆ’1) (√(y/k)))  Ο€a^2 vdt=βˆ’Ο€R^2 dy  β‡’(dy/dt)=βˆ’(a^2 /R^2 )v=βˆ’((a^2 (√(2gy)))/R^2 )  β‡’(dy/(√y))=βˆ’((a^2 (√(2g)))/R^2 ) dt  β‡’βˆ«_h ^( y) (dy/(√y))=βˆ’((a^2 (√(2g)))/R^2 ) ∫_0 ^( t) dt  β‡’2((√y)βˆ’(√h))=βˆ’((a^2 (√(2g)))/R^2 )Γ—t  β‡’(√y)=(√h)βˆ’((a^2 (√(2g)))/(2R^2 ))Γ—t=(√h)βˆ’pt  β‡’y=hβˆ’2(√h)pt+p^2 t^2   y=0β‡’t=((√h)/p)=(R^2 /a^2 )(√((2h)/g))=t_1  (at t_1  tank is empty)    β‡’u(t)=2(√(2gk))[((pt)/(√k))βˆ’tan^(βˆ’1) (√(h/k))+tan^(βˆ’1) ((√(h/k))βˆ’((pt)/(√k)))]  with Ξ·=(p/(√k))=(a^2 /R^2 )(√((2gΞ»)/h))  β‡’u(t)=2(√((2gh)/Ξ»))[Ξ·tβˆ’tan^(βˆ’1) (√λ)+tan^(βˆ’1) ((√λ)βˆ’Ξ·t)]

$${M}_{{W}} ={mass}\:{of}\:{water}\:{at}\:{begin}=\pi{R}^{\mathrm{2}} {h}\rho \\ $$$${at}\:{water}\:{depth}\:{y}: \\ $$$${total}\:{mass}:\:{m}={M}+{M}_{{W}} \frac{{y}}{{h}} \\ $$$$\Rightarrow\frac{{dm}}{{dt}}=\frac{{M}_{{W}} }{{h}}Γ—\frac{{dy}}{{dt}} \\ $$$$\left({relative}\right)\:{speed}\:{of}\:{outgoing}\:{water}: \\ $$$${v}=\sqrt{\mathrm{2}{gy}} \\ $$$$ \\ $$$${let}'{s}\:{say}\:{speed}\:{of}\:{tank}={u} \\ $$$$βˆ’{v}\frac{{dm}}{{dt}}={m}\frac{{du}}{{dt}} \\ $$$$βˆ’{v}Γ—\frac{{M}_{{W}} }{{h}}Γ—\frac{{dy}}{{dt}}={m}\frac{{du}}{{dy}}Γ—\frac{{dy}}{{dt}} \\ $$$$βˆ’\frac{{M}_{{W}} }{{h}}{v}={m}\frac{{du}}{{dy}} \\ $$$$βˆ’\frac{{M}_{{W}} }{{h}}\sqrt{\mathrm{2}{gy}}=\left({M}+\frac{{M}_{{W}} }{{h}}{y}\right)\frac{{du}}{{dy}} \\ $$$$βˆ’\frac{{M}_{{W}} }{{h}}Γ—\frac{\sqrt{\mathrm{2}{gy}}}{{M}+\frac{{M}_{{W}} }{{h}}{y}}\:{dy}={du} \\ $$$$βˆ’\sqrt{\mathrm{2}{g}}Γ—\frac{\sqrt{{y}}}{\left(\frac{{hM}}{{M}_{{W}} }+{y}\right)}\:{dy}={du} \\ $$$${with}\:{k}=\frac{{hM}}{{M}_{{W}} } \\ $$$$βˆ’\sqrt{\mathrm{2}{g}}Γ—\int_{{h}} ^{\:\mathrm{0}} \frac{\sqrt{{y}}}{\left({k}+{y}\right)}\:{dy}=\int_{\mathrm{0}} ^{\:{u}_{{max}} } {du} \\ $$$$\sqrt{\mathrm{2}{g}}Γ—\mathrm{2}\sqrt{{k}}\left[\sqrt{\frac{{y}}{{k}}}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\frac{{y}}{{k}}}\right]_{\mathrm{0}} ^{{h}} ={u}_{{max}} \\ $$$${u}_{{max}} =\mathrm{2}\sqrt{\mathrm{2}{gk}}\left(\sqrt{\frac{{h}}{{k}}}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\frac{{h}}{{k}}}\right) \\ $$$${u}_{{max}} =\mathrm{2}\sqrt{\frac{\mathrm{2}{ghM}}{{M}_{{W}} }}\left(\sqrt{\frac{{M}_{{W}} }{{M}}}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\frac{{M}_{{W}} }{{M}}}\right) \\ $$$${with}\:\lambda=\frac{{M}_{{W}} }{{M}} \\ $$$$\Rightarrow{u}_{{max}} =\mathrm{2}\sqrt{\frac{\mathrm{2}{gh}}{\lambda}}\left(\sqrt{\lambda}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\lambda}\right) \\ $$$$ \\ $$$${Example}:\:\lambda=\frac{{M}_{{W}} }{{M}}=\mathrm{5},\:{h}=\mathrm{1}\:{m} \\ $$$$\Rightarrow{u}_{{max}} =\mathrm{2}\sqrt{\frac{\mathrm{20}}{\mathrm{5}}}\left(\sqrt{\mathrm{5}}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\mathrm{5}}\right)=\mathrm{4}.\mathrm{3}\:{m}/{s} \\ $$$$==================== \\ $$$${u}\left({y}\right)=\mathrm{2}\sqrt{\mathrm{2}{gk}}\left(\sqrt{\frac{{h}}{{k}}}βˆ’\sqrt{\frac{{y}}{{k}}}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\frac{{h}}{{k}}}+\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\frac{{y}}{{k}}}\right) \\ $$$$\pi{a}^{\mathrm{2}} {vdt}=βˆ’\pi{R}^{\mathrm{2}} {dy} \\ $$$$\Rightarrow\frac{{dy}}{{dt}}=βˆ’\frac{{a}^{\mathrm{2}} }{{R}^{\mathrm{2}} }{v}=βˆ’\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{2}{gy}}}{{R}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{dy}}{\sqrt{{y}}}=βˆ’\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}{{R}^{\mathrm{2}} }\:{dt} \\ $$$$\Rightarrow\int_{{h}} ^{\:{y}} \frac{{dy}}{\sqrt{{y}}}=βˆ’\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}{{R}^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:{t}} {dt} \\ $$$$\Rightarrow\mathrm{2}\left(\sqrt{{y}}βˆ’\sqrt{{h}}\right)=βˆ’\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}{{R}^{\mathrm{2}} }Γ—{t} \\ $$$$\Rightarrow\sqrt{{y}}=\sqrt{{h}}βˆ’\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{2}{g}}}{\mathrm{2}{R}^{\mathrm{2}} }Γ—{t}=\sqrt{{h}}βˆ’{pt} \\ $$$$\Rightarrow{y}={h}βˆ’\mathrm{2}\sqrt{{h}}{pt}+{p}^{\mathrm{2}} {t}^{\mathrm{2}} \\ $$$${y}=\mathrm{0}\Rightarrow{t}=\frac{\sqrt{{h}}}{{p}}=\frac{{R}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\sqrt{\frac{\mathrm{2}{h}}{{g}}}={t}_{\mathrm{1}} \:\left({at}\:{t}_{\mathrm{1}} \:{tank}\:{is}\:{empty}\right) \\ $$$$ \\ $$$$\Rightarrow{u}\left({t}\right)=\mathrm{2}\sqrt{\mathrm{2}{gk}}\left[\frac{{pt}}{\sqrt{{k}}}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\frac{{h}}{{k}}}+\mathrm{tan}^{βˆ’\mathrm{1}} \left(\sqrt{\frac{{h}}{{k}}}βˆ’\frac{{pt}}{\sqrt{{k}}}\right)\right] \\ $$$${with}\:\eta=\frac{{p}}{\sqrt{{k}}}=\frac{{a}^{\mathrm{2}} }{{R}^{\mathrm{2}} }\sqrt{\frac{\mathrm{2}{g}\lambda}{{h}}} \\ $$$$\Rightarrow{u}\left({t}\right)=\mathrm{2}\sqrt{\frac{\mathrm{2}{gh}}{\lambda}}\left[\eta{t}βˆ’\mathrm{tan}^{βˆ’\mathrm{1}} \sqrt{\lambda}+\mathrm{tan}^{βˆ’\mathrm{1}} \left(\sqrt{\lambda}βˆ’\eta{t}\right)\right] \\ $$

Commented by mrW2 last updated on 12/Feb/18

Is any solution for this question given?

Commented by ajfour last updated on 12/Feb/18

SUPERB! Sir, Energy method  leads to a complicated differential  equation, i guess.   Your method is Excellent , Sir.

$$\mathbb{SUPERB}!\:{Sir},\:{Energy}\:{method} \\ $$$${leads}\:{to}\:{a}\:{complicated}\:{differential} \\ $$$${equation},\:{i}\:{guess}.\: \\ $$$${Your}\:{method}\:{is}\:\mathscr{E}{xcellent}\:,\:{Sir}. \\ $$

Commented by ajfour last updated on 12/Feb/18

No sir, not from book.

$${No}\:{sir},\:{not}\:{from}\:{book}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com