All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 29849 by abdo imad last updated on 12/Feb/18
letgivea>0,b>0findthevslueof ∫0+∞e−at−e−bttcos(xt)dt.
Commented byabdo imad last updated on 19/Feb/18
letputF(x)=∫0∞e−at−e−bttcos(xt)dtafterverifyingtbat Fisderivablewehave F′(x)=∫0∞∂∂x(e−at−e−bttcos(xt))dt =−∫0∞(e−at−e−bt)sin(xt)dt=Im(∫0∞(e−bt−e−at)eixtdt) =Im(∫0∞e(−b+ix)t−e(−a+ix)t)dtbut ∫0∞e(−b+ix)tdt=1−b+ix[e(−b+ix)t]t=0∞=−1−b+ix=1b−ix alsowehave∫0∞e(−a+ix)tdt=1a−ix⇒ dFdx(x)=1b−ix−1a−ix=b+ixb2+x2−a+ixa2+x2 =bb2+x2−aa2+x2+ix(1b2+x2−1a2+x2)⇒ dFdx(x)=xa2+x2−b2−x2(a2+x2)(b2+x2)=(a2−b2)x(a2+x2)(b2+x2)⇒ F(x)=∫xb2+x2dx−∫xa2+x2dx+λ =12ln(b2+x2)−12ln(a2+x2)+λ F(x)=12ln(x2+b2x2+a2)+λ λ=limx→0(F(x)−12ln(x2+b2x2+a2))=F(o)−ln(ba) λ=∫0∞e−at−e−bttdt−ln(ba)letput I(ξ)=∫ξ+∞e−at−e−bttdt=∫ξ∞e−attdt−∫ξ∞e−bttdtch.at=u give∫ξ∞e−attdt=∫aξ+∞e−uuadua=∫aξ+∞e−uudu⇒ I(ξ)=∫aξ+∞e−uudu−∫bξ+∞e−uudu=∫aξbξe−uudubut ∃c∈]aξ,bξ[/I(ξ)=e−ξ∫aξbξduu=e−ξln(ba)⇒ ∫0∞e−at−e−bttdt=limξ→0I(ξ)=ln(ba)⇒λ=0and F(x)=12ln(x2+b2x2+a2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com