Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29849 by abdo imad last updated on 12/Feb/18

let give a>0 ,b>0 find the vslue of   ∫_0 ^(+∞)   ((e^(−at)  −e^(−bt) )/t) cos(xt)dt .

letgivea>0,b>0findthevslueof 0+eatebttcos(xt)dt.

Commented byabdo imad last updated on 19/Feb/18

let put F(x)= ∫_0 ^∞   ((e^(−at)  −e^(−bt) )/t)cos(xt)dt after verifying tbat  F is derivable we have  F^′ (x)= ∫_0 ^∞  (∂/∂x)( ((e^(−at)  −e^(−bt) )/t)cos(xt))dt  =−∫_0 ^∞  (e^(−at)  − e^(−bt) )sin(xt)dt=Im(∫_0 ^∞ (e^(−bt)  −e^(−at) )e^(ixt) dt)  =Im( ∫_0 ^∞  e^((−b+ix)t)  −e^((−a+ix)t) )dt but  ∫_0 ^∞   e^((−b+ix)t) dt= (1/(−b+ix)) [ e^((−b+ix)t) ]_(t=0) ^∞ = ((−1)/(−b +ix)) = (1/(b−ix))  also we have ∫_0 ^∞  e^((−a+ix)t) dt= (1/(a−ix)) ⇒  (dF/dx)(x)= (1/(b−ix)) −(1/(a−ix))= ((b+ix)/(b^2  +x^2 )) − ((a+ix)/(a^2  +x^2 ))  =(b/(b^2  +x^2 )) −(a/(a^2  +x^2 ))  +ix( (1/(b^2  +x^2 )) − (1/(a^2  +x^2 )))⇒  (dF/dx)(x)=x ((a^2 +x^2  −b^2  −x^2 )/((a^2  +x^2 )(b^2  +x^2 )))=(((a^2 −b^2 )x)/((a^2  +x^2 )(b^2  +x^2 )))⇒  F(x)= ∫   (x/(b^2  +x^2 ))dx −∫ (x/(a^2  +x^2 ))dx +λ  =(1/2)ln(b^2  +x^2 ) −(1/2)ln(a^2  +x^2 ) +λ  F(x)=(1/2)ln(((x^2  +b^2 )/(x^2  +a^2 ))) +λ  λ=lim_(x→0) (F(x)−(1/2)ln( ((x^2  +b^2 )/(x^2  +a^2 ))))=F(o)−ln((b/a))  λ=∫_0 ^∞   ((e^(−at)  −e^(−bt) )/t)dt −ln((b/a)) let put  I(ξ)=∫_ξ ^(+∞)    ((e^(−at)  −e^(−bt) )/t)dt=∫_ξ ^∞   (e^(−at) /t)dt −∫_ξ ^∞  (e^(−bt) /t)dt ch.at=u  give ∫_ξ ^∞   (e^(−at) /t)dt= ∫_(aξ) ^(+∞)   (e^(−u) /(u/a)) (du/a)= ∫_(aξ) ^(+∞)  (e^(−u) /u)du⇒  I(ξ)= ∫_(aξ) ^(+∞)  (e^(−u) /u)du −∫_(bξ) ^(+∞)   (e^(−u) /u)du=∫_(aξ) ^(bξ)   (e^(−u) /u) du but  ∃ c_ ∈]aξ,bξ[ /  I(ξ)= e^(−ξ)  ∫_(aξ) ^(bξ)  (du/u)=e^(−ξ) ln((b/a)) ⇒  ∫_0 ^∞   ((e^(−at)  −e^(−bt) )/t)dt=lim_(ξ→0)  I(ξ)=ln((b/a)) ⇒ λ=0 and  F(x)=(1/2)ln(((x^2  +b^2 )/(x^2  +a^2 )))  .

letputF(x)=0eatebttcos(xt)dtafterverifyingtbat Fisderivablewehave F(x)=0x(eatebttcos(xt))dt =0(eatebt)sin(xt)dt=Im(0(ebteat)eixtdt) =Im(0e(b+ix)te(a+ix)t)dtbut 0e(b+ix)tdt=1b+ix[e(b+ix)t]t=0=1b+ix=1bix alsowehave0e(a+ix)tdt=1aix dFdx(x)=1bix1aix=b+ixb2+x2a+ixa2+x2 =bb2+x2aa2+x2+ix(1b2+x21a2+x2) dFdx(x)=xa2+x2b2x2(a2+x2)(b2+x2)=(a2b2)x(a2+x2)(b2+x2) F(x)=xb2+x2dxxa2+x2dx+λ =12ln(b2+x2)12ln(a2+x2)+λ F(x)=12ln(x2+b2x2+a2)+λ λ=limx0(F(x)12ln(x2+b2x2+a2))=F(o)ln(ba) λ=0eatebttdtln(ba)letput I(ξ)=ξ+eatebttdt=ξeattdtξebttdtch.at=u giveξeattdt=aξ+euuadua=aξ+euudu I(ξ)=aξ+euudubξ+euudu=aξbξeuudubut c]aξ,bξ[/I(ξ)=eξaξbξduu=eξln(ba) 0eatebttdt=limξ0I(ξ)=ln(ba)λ=0and F(x)=12ln(x2+b2x2+a2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com