All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 29853 by abdo imad last updated on 13/Feb/18
find∫−∞+∞dxx2+2ix+2−4i.
Commented by abdo imad last updated on 18/Feb/18
letputf(z)=1z2+2iz+2−4ipolesoff?letfindtherootsofofz2+2iz+2−4i=0⇒Δ′=i2−(2−4i)=−1−2+4i=−3+4i=(1+2i)2⇒z1=−i+1+2i=1+iz2=−i−(1+2i)=−1−3i∣z1∣−1=2−1<1and∣z2∣−1=10−1>1(toeliminatefromresidus)∫−∞+∞f(z)dz=2iπRes(f,z1)butf(z)=1(z−z1)(z−z2)⇒Res(f,z1)=limz→z1(z−z1)f(z)=1z1−z2=12+4i=2−4i4−16=2−4i−12=−16+13i∫−∞+∞f(z)dz=2iπ(−16+13i)=−iπ3−2π3⇒∫−∞+∞dxx2+2ix+2−4i=−2π3−iπ3.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com