Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29853 by abdo imad last updated on 13/Feb/18

find ∫_(−∞) ^(+∞)     (dx/(x^2 +2ix +2−4i)) .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}{ix}\:+\mathrm{2}−\mathrm{4}{i}}\:. \\ $$

Commented by abdo imad last updated on 18/Feb/18

let put f(z)= (1/(z^2  +2iz +2−4i)) poles of f?let find the roots of  of z^2  +2iz +2−4i=0 ⇒Δ^′ =i^2  −(2−4i)=−1−2 +4i  =−3+4i=(1+2i)^2  ⇒ z_1 =−i+1+2i=1+i  z_2 =−i−(1+2i)=−1 −3i  ∣z_1 ∣ −1=(√2) −1<1 and ∣z_2 ∣ −1=(√(10)) −1>1 (to eliminate  from residus)  ∫_(−∞) ^(+∞)   f(z)dz= 2iπ Res(f,z_1 )  but  f(z)=   (1/((z−z_1 )(z−z_2 ))) ⇒ Res(f,z_1 )=lim_(z→z_1 ) (z−z_1 )f(z)  =  (1/(z_1 −z_2 ))= (1/(2+4i))=((2−4i)/(4 −16))=((2−4i)/(−12))=−(1/6) +(1/3)i  ∫_(−∞) ^(+∞)  f(z)dz=2iπ(−(1/6) +(1/3)i)=((−iπ)/3) −((2π)/3) ⇒  ∫_(−∞) ^(+∞)          (dx/(x^2  +2ix +2−4i))= −((2π)/3) −((iπ)/3) .

$${let}\:{put}\:{f}\left({z}\right)=\:\frac{\mathrm{1}}{{z}^{\mathrm{2}} \:+\mathrm{2}{iz}\:+\mathrm{2}−\mathrm{4}{i}}\:{poles}\:{of}\:{f}?{let}\:{find}\:{the}\:{roots}\:{of} \\ $$$${of}\:{z}^{\mathrm{2}} \:+\mathrm{2}{iz}\:+\mathrm{2}−\mathrm{4}{i}=\mathrm{0}\:\Rightarrow\Delta^{'} ={i}^{\mathrm{2}} \:−\left(\mathrm{2}−\mathrm{4}{i}\right)=−\mathrm{1}−\mathrm{2}\:+\mathrm{4}{i} \\ $$$$=−\mathrm{3}+\mathrm{4}{i}=\left(\mathrm{1}+\mathrm{2}{i}\right)^{\mathrm{2}} \:\Rightarrow\:{z}_{\mathrm{1}} =−{i}+\mathrm{1}+\mathrm{2}{i}=\mathrm{1}+{i} \\ $$$${z}_{\mathrm{2}} =−{i}−\left(\mathrm{1}+\mathrm{2}{i}\right)=−\mathrm{1}\:−\mathrm{3}{i} \\ $$$$\mid{z}_{\mathrm{1}} \mid\:−\mathrm{1}=\sqrt{\mathrm{2}}\:−\mathrm{1}<\mathrm{1}\:{and}\:\mid{z}_{\mathrm{2}} \mid\:−\mathrm{1}=\sqrt{\mathrm{10}}\:−\mathrm{1}>\mathrm{1}\:\left({to}\:{eliminate}\right. \\ $$$$\left.{from}\:{residus}\right) \\ $$$$\int_{−\infty} ^{+\infty} \:\:{f}\left({z}\right){dz}=\:\mathrm{2}{i}\pi\:{Res}\left({f},{z}_{\mathrm{1}} \right)\:\:{but} \\ $$$${f}\left({z}\right)=\:\:\:\frac{\mathrm{1}}{\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)}\:\Rightarrow\:{Res}\left({f},{z}_{\mathrm{1}} \right)={lim}_{{z}\rightarrow{z}_{\mathrm{1}} } \left({z}−{z}_{\mathrm{1}} \right){f}\left({z}\right) \\ $$$$=\:\:\frac{\mathrm{1}}{{z}_{\mathrm{1}} −{z}_{\mathrm{2}} }=\:\frac{\mathrm{1}}{\mathrm{2}+\mathrm{4}{i}}=\frac{\mathrm{2}−\mathrm{4}{i}}{\mathrm{4}\:−\mathrm{16}}=\frac{\mathrm{2}−\mathrm{4}{i}}{−\mathrm{12}}=−\frac{\mathrm{1}}{\mathrm{6}}\:+\frac{\mathrm{1}}{\mathrm{3}}{i} \\ $$$$\int_{−\infty} ^{+\infty} \:{f}\left({z}\right){dz}=\mathrm{2}{i}\pi\left(−\frac{\mathrm{1}}{\mathrm{6}}\:+\frac{\mathrm{1}}{\mathrm{3}}{i}\right)=\frac{−{i}\pi}{\mathrm{3}}\:−\frac{\mathrm{2}\pi}{\mathrm{3}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{2}{ix}\:+\mathrm{2}−\mathrm{4}{i}}=\:−\frac{\mathrm{2}\pi}{\mathrm{3}}\:−\frac{{i}\pi}{\mathrm{3}}\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com