Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29854 by abdo imad last updated on 13/Feb/18

find ∫_(−∞) ^(+∞)        (((x^2 +2)dx)/(x^4  +8x^2 −16x +20)) .

find+(x2+2)dxx4+8x216x+20.

Commented by abdo imad last updated on 18/Feb/18

we have proved that ∫_(−∞) ^(+∞)     (dx/(x^2   +2ix +2−4i))=−((2π)/3) −i(π/3) but     (1/(x^2  +2ix +2−4i)) = (1/(x^2  +2 +i(2x−4)))  =    ((x^2  +2−i(2x−4))/((x^2  +2)^2  +(2x−4)^2 ))= ((x^2  +2)/(x^4  +4x^2  +4 +4x^2  −16x +16))   −i ((2x−4)/(x^4  +4x^2  +4 +4x^2  −16x +16))  = ((x^2  +2)/(x^4  +8x^2  −16x+20)) −i ((2x−4)/(x^4  +8x^2  −16x +20)) ⇒  ∫_(−∞) ^(+∞)   ((x^2 +2)/(x^4  +8x^2  −16x +20)) = ((−2π)/3) and  ∫_(−∞) ^(+∞)     ((2x−4)/(x^4  +8x^2  −16x +20))= (π/3) .

wehaveprovedthat+dxx2+2ix+24i=2π3iπ3but1x2+2ix+24i=1x2+2+i(2x4)=x2+2i(2x4)(x2+2)2+(2x4)2=x2+2x4+4x2+4+4x216x+16i2x4x4+4x2+4+4x216x+16=x2+2x4+8x216x+20i2x4x4+8x216x+20+x2+2x4+8x216x+20=2π3and+2x4x4+8x216x+20=π3.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com