All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 29854 by abdo imad last updated on 13/Feb/18
find∫−∞+∞(x2+2)dxx4+8x2−16x+20.
Commented by abdo imad last updated on 18/Feb/18
wehaveprovedthat∫−∞+∞dxx2+2ix+2−4i=−2π3−iπ3but1x2+2ix+2−4i=1x2+2+i(2x−4)=x2+2−i(2x−4)(x2+2)2+(2x−4)2=x2+2x4+4x2+4+4x2−16x+16−i2x−4x4+4x2+4+4x2−16x+16=x2+2x4+8x2−16x+20−i2x−4x4+8x2−16x+20⇒∫−∞+∞x2+2x4+8x2−16x+20=−2π3and∫−∞+∞2x−4x4+8x2−16x+20=π3.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com