Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29856 by abdo imad last updated on 13/Feb/18

find  ∫_0 ^(2π)    ((cos(nθ))/(2+3cosθ))dθ .  n from N.

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left({n}\theta\right)}{\mathrm{2}+\mathrm{3}{cos}\theta}{d}\theta\:.\:\:{n}\:{from}\:{N}. \\ $$

Commented by prof Abdo imad last updated on 18/Feb/18

let put I= ∫_0 ^(2π)   ((cos(nθ))/(2+3cosθ))dθ  I = Re( ∫_0 ^(2π)    (e^(inθ) /(2+cosθ))dθ)=Re(w_n ) ch. e^(iθ)  =z give  w_n = ∫_(∣z∣=1)    (z^n /(2 +((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)      ((2z^n )/(iz(4 +z+z^(−1) )))dz  =∫_(∣z∣=1)    ((−2iz^n )/(4z +z^2  +1))dz =∫_(∣z∣=1)    ((−2i z^n )/(z^2  +4z +1))dz let  introduce the complex function  ϕ(z)=  ((−2iz^n )/(z^2  +4z +1)) poles of ϕ?  Δ^′ = 2^2 −1 =3 ⇒z_1 =−2+(√3)  and z_2 =−2−(√3)  ∣z_1 ∣ −1=2−(√3) −1=1−(√3)<1 and  ∣z_2 ∣ −1=2+(√3)−1=1+(√3)>1(to eliminate from  residus) so  ∫_(∣z∣=1) ϕ(z)dz=2iπ Res(ϕ,z_1 ) but we have  ϕ(z)= ((−2i z^n )/((z−z_1 )(z−z_2 ))) ⇒  Res(ϕ,z_1 )= ((−2i z_1 ^n )/(z_1  −z_2 )) =  ((−2i(−2+(√3) )^n )/(2(√3)))  =   ((−i(−2+(√3))^n )/(√3))  ∫_(∣z∣=1) ϕ(z)dz= ((2π)/(√3)) (−2+(√3))^n   Re( ∫.....)= ((2π)/(√3))(−2+(√3))^n ⇒  I= ((2π)/(√3))(−2+(√3))^n   .

$${let}\:{put}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cos}\left({n}\theta\right)}{\mathrm{2}+\mathrm{3}{cos}\theta}{d}\theta \\ $$$${I}\:=\:{Re}\left(\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{e}^{{in}\theta} }{\mathrm{2}+{cos}\theta}{d}\theta\right)={Re}\left({w}_{{n}} \right)\:{ch}.\:{e}^{{i}\theta} \:={z}\:{give} \\ $$$${w}_{{n}} =\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{{z}^{{n}} }{\mathrm{2}\:+\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{2}}}\:\frac{{dz}}{{iz}} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\mathrm{2}{z}^{{n}} }{{iz}\left(\mathrm{4}\:+{z}+{z}^{−\mathrm{1}} \right)}{dz} \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{−\mathrm{2}{iz}^{{n}} }{\mathrm{4}{z}\:+{z}^{\mathrm{2}} \:+\mathrm{1}}{dz}\:=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{−\mathrm{2}{i}\:{z}^{{n}} }{{z}^{\mathrm{2}} \:+\mathrm{4}{z}\:+\mathrm{1}}{dz}\:{let} \\ $$$${introduce}\:{the}\:{complex}\:{function} \\ $$$$\varphi\left({z}\right)=\:\:\frac{−\mathrm{2}{iz}^{{n}} }{{z}^{\mathrm{2}} \:+\mathrm{4}{z}\:+\mathrm{1}}\:{poles}\:{of}\:\varphi? \\ $$$$\Delta^{'} =\:\mathrm{2}^{\mathrm{2}} −\mathrm{1}\:=\mathrm{3}\:\Rightarrow{z}_{\mathrm{1}} =−\mathrm{2}+\sqrt{\mathrm{3}}\:\:{and}\:{z}_{\mathrm{2}} =−\mathrm{2}−\sqrt{\mathrm{3}} \\ $$$$\mid{z}_{\mathrm{1}} \mid\:−\mathrm{1}=\mathrm{2}−\sqrt{\mathrm{3}}\:−\mathrm{1}=\mathrm{1}−\sqrt{\mathrm{3}}<\mathrm{1}\:{and} \\ $$$$\mid{z}_{\mathrm{2}} \mid\:−\mathrm{1}=\mathrm{2}+\sqrt{\mathrm{3}}−\mathrm{1}=\mathrm{1}+\sqrt{\mathrm{3}}>\mathrm{1}\left({to}\:{eliminate}\:{from}\right. \\ $$$$\left.{residus}\right)\:{so} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{z}_{\mathrm{1}} \right)\:{but}\:{we}\:{have} \\ $$$$\varphi\left({z}\right)=\:\frac{−\mathrm{2}{i}\:{z}^{{n}} }{\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)}\:\Rightarrow \\ $$$${Res}\left(\varphi,{z}_{\mathrm{1}} \right)=\:\frac{−\mathrm{2}{i}\:{z}_{\mathrm{1}} ^{{n}} }{{z}_{\mathrm{1}} \:−{z}_{\mathrm{2}} }\:=\:\:\frac{−\mathrm{2}{i}\left(−\mathrm{2}+\sqrt{\mathrm{3}}\:\right)^{{n}} }{\mathrm{2}\sqrt{\mathrm{3}}} \\ $$$$=\:\:\:\frac{−{i}\left(−\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{n}} }{\sqrt{\mathrm{3}}} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}=\:\frac{\mathrm{2}\pi}{\sqrt{\mathrm{3}}}\:\left(−\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{n}} \\ $$$${Re}\left(\:\int.....\right)=\:\frac{\mathrm{2}\pi}{\sqrt{\mathrm{3}}}\left(−\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{n}} \Rightarrow \\ $$$${I}=\:\frac{\mathrm{2}\pi}{\sqrt{\mathrm{3}}}\left(−\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{n}} \:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com