Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 29896 by ajfour last updated on 13/Feb/18

Commented by ajfour last updated on 13/Feb/18

At least if α = β = γ =θ (say) .

Atleastifα=β=γ=θ(say).

Answered by mrW2 last updated on 13/Feb/18

take B as origin and BC as x−axis.  B(0,0)  C(a,0)  A((a/2),(((√3)a)/2))    Eqn. of BE:  y=tan α x    Eqn. of CF:  y=−tan ((π/3)−β) (x−a)    Eqn. of AD:  y=(((√3)a)/2)+tan ((π/3)+γ) (x−(a/2))    y_D =tan α x_D =(((√3)a)/2)+tan ((π/3)+γ) (x_D −(a/2))  [tan α−tan ((π/3)+γ)] x_D =(a/2)[(√3)−tan ((π/3)+γ)]  ⇒x_D =((a[(√3)−tan ((π/3)+γ)])/(tan α−tan ((π/3)+γ)))  ⇒y_D =((a[(√3)−tan ((π/3)+γ)]tan α)/(tan α−tan ((π/3)+γ)))    y_E =tan α x_E =−tan ((π/3)−β) (x_E −a)  (tan α+tan ((π/3)−β)] x_E =a tan ((π/3)−β)  ⇒x_E =((a tan ((π/3)−β))/(tan α+tan ((π/3)−β)))  ⇒y_E =((a tan ((π/3)−β) tan α)/(tan α+tan ((π/3)−β)))    y_F =−tan ((π/3)−β) (x_F −a)=(((√3)a)/2)+tan ((π/3)+γ) (x_F −(a/2))  [tan ((π/3)+γ)+tan ((π/3)−β)] x_F =(a/2)[2tan ((π/3)−β)+tan ((π/3)+γ)−(√3)]  ⇒x_F =((a[2tan ((π/3)−β)+tan ((π/3)+γ)−(√3)])/(2[tan ((π/3)+γ)+tan ((π/3)−β)]))  ⇒y_F =((a[tan ((π/3)+γ)+(√3)]tan ((π/3)−β))/(2[tan ((π/3)+γ)+tan ((π/3)−β)]))    A_(Blue) =(1/2)[x_D (y_E −y_F )+x_E (y_F −y_D )+x_F (y_D −y_E )]    A_(Blue) =(a^2 /2)((((√3)−tan ((π/3)+γ))/(tan α−tan ((π/3)+γ)))×{((tan ((π/3)−β)tan α)/(tan α+tan ((π/3)−β)))−(([tan ((π/3)+γ)+(√3)]tan ((π/3)−β))/(2[tan ((π/3)+γ)+tan ((π/3)−β)]))}+((tan ((π/3)−β))/(tan α+tan ((π/3)−β)))×{(([tan ((π/3)+γ)+(√3)]tan ((π/3)−β))/(2[tan ((π/3)+γ)+tan ((π/3)−β)]))−(([(√3)−tan ((π/3)+γ)]tan α)/(tan α−tan ((π/3)+γ)))}+(([2tan ((π/3)−β)+tan ((π/3)+γ)−(√3)]tan α)/(2[tan ((π/3)+γ)+tan ((π/3)−β)]))×{(((√3)−tan ((π/3)+γ))/(tan α−tan ((π/3)+γ)))−((tan ((π/3)−β))/(tan α+tan ((π/3)−β)))})

takeBasoriginandBCasxaxis.B(0,0)C(a,0)A(a2,3a2)Eqn.ofBE:y=tanαxEqn.ofCF:y=tan(π3β)(xa)Eqn.ofAD:y=3a2+tan(π3+γ)(xa2)yD=tanαxD=3a2+tan(π3+γ)(xDa2)[tanαtan(π3+γ)]xD=a2[3tan(π3+γ)]xD=a[3tan(π3+γ)]tanαtan(π3+γ)yD=a[3tan(π3+γ)]tanαtanαtan(π3+γ)yE=tanαxE=tan(π3β)(xEa)(tanα+tan(π3β)]xE=atan(π3β)xE=atan(π3β)tanα+tan(π3β)yE=atan(π3β)tanαtanα+tan(π3β)yF=tan(π3β)(xFa)=3a2+tan(π3+γ)(xFa2)[tan(π3+γ)+tan(π3β)]xF=a2[2tan(π3β)+tan(π3+γ)3]xF=a[2tan(π3β)+tan(π3+γ)3]2[tan(π3+γ)+tan(π3β)]yF=a[tan(π3+γ)+3]tan(π3β)2[tan(π3+γ)+tan(π3β)]ABlue=12[xD(yEyF)+xE(yFyD)+xF(yDyE)]ABlue=a22(3tan(π3+γ)tanαtan(π3+γ)×{tan(π3β)tanαtanα+tan(π3β)[tan(π3+γ)+3]tan(π3β)2[tan(π3+γ)+tan(π3β)]}+tan(π3β)tanα+tan(π3β)×{[tan(π3+γ)+3]tan(π3β)2[tan(π3+γ)+tan(π3β)][3tan(π3+γ)]tanαtanαtan(π3+γ)}+[2tan(π3β)+tan(π3+γ)3]tanα2[tan(π3+γ)+tan(π3β)]×{3tan(π3+γ)tanαtan(π3+γ)tan(π3β)tanα+tan(π3β)})

Commented by ajfour last updated on 14/Feb/18

Unlimited thanks Sir.  I will try some vector approach.

UnlimitedthanksSir.Iwilltrysomevectorapproach.

Answered by ajfour last updated on 13/Feb/18

Area(△DEF)=(√3) a^2 sin^2 ((π/6)−θ) .

Area(DEF)=3a2sin2(π6θ).

Answered by ajfour last updated on 14/Feb/18

A=(a^2 /2)sin ((π/3)+α−β)[((sin (((2π)/3)+β))/(sin (((2π)/3)+β−α)))−((sin γ)/(sin ((π/3)+γ−α)))]        ×[((sin (((2π)/3)+γ))/(sin ((π/3)+β−γ))) − ((sin α)/(sin (((2π)/3)+β−α)))] .

A=a22sin(π3+αβ)[sin(2π3+β)sin(2π3+βα)sinγsin(π3+γα)]×[sin(2π3+γ)sin(π3+βγ)sinαsin(2π3+βα)].

Answered by ajfour last updated on 14/Feb/18

eq. of BDE :  x=pcos α   ;  y=psin α  eq. of CEF :  x=a+qcos (((2π)/3)+β) ; y=qsin (((2π)/3)+β)  eq. of AFD :  x=(a/2)+rcos ((π/3)+γ)  y=((√3)/2)sin ((π/3)+γ)  point E (x_2 , y_2 ) lies on line BDE  and line CEF , so  p_2 cos α=a+q_1 cos (((2π)/3)+β)  p_2 sin α=q_1 sin (((2π)/3)+β)  ⇒  p_2 = ((asin (((2π)/3)+β))/(sin (((2π)/3)+β−α)))       q_1 = ((asin α)/(sin (((2π)/3)+β−α)))   point D(x_1 ,y_1 )  lies on BDE   and AFD, so  p_1 cos α=(a/2)+r_2 cos ((π/3)+γ)  p_1 sin α = ((a(√3))/2)+r_2 sin ((π/3)+γ)  ⇒  p_1 = ((asin γ)/(sin ((π/3)+γ−α)))  point F (x_3 , y_3 ) lies on CEF and  AFD, so   a+q_2 cos (((2π)/3)−β)=r_1 cos ((π/3)+γ)  q_2 sin (((2π)/3)+β)=((a(√3))/2)+r_1 sin ((π/3)+γ)  ⇒   q_2 =((asin (((2π)/3)+γ))/(sin ((π/3)+β−γ)))  A= (1/2)(p_2 −p_1 )(q_2 −q_1 )sin ((π/3)+α−β)  hence the answer .

eq.ofBDE:x=pcosα;y=psinαeq.ofCEF:x=a+qcos(2π3+β);y=qsin(2π3+β)eq.ofAFD:x=a2+rcos(π3+γ)y=32sin(π3+γ)pointE(x2,y2)liesonlineBDEandlineCEF,sop2cosα=a+q1cos(2π3+β)p2sinα=q1sin(2π3+β)p2=asin(2π3+β)sin(2π3+βα)q1=asinαsin(2π3+βα)pointD(x1,y1)liesonBDEandAFD,sop1cosα=a2+r2cos(π3+γ)p1sinα=a32+r2sin(π3+γ)p1=asinγsin(π3+γα)pointF(x3,y3)liesonCEFandAFD,soa+q2cos(2π3β)=r1cos(π3+γ)q2sin(2π3+β)=a32+r1sin(π3+γ)q2=asin(2π3+γ)sin(π3+βγ)A=12(p2p1)(q2q1)sin(π3+αβ)hencetheanswer.

Answered by mrW2 last updated on 14/Feb/18

I have considered following method:  ∠BEC=π−α−((π/3)−β)=π−((π/3)+α−β)  ((BE)/(sin ((π/3)−β)))=((BC)/(sin [π−((π/3)+α−β)]))  ⇒BE=((sin ((π/3)−β) a)/(sin ((π/3)−β+α)))  A_(ΔBEC) =(a/2)×BE×sin α  ⇒A_(ΔBEC) =(a^2 /2)×((sin α sin ((π/3)−β))/(sin ((π/3)−β+α)))  ⇒A_(ΔCFA) =(a^2 /2)×((sin β sin ((π/3)−γ))/(sin ((π/3)−γ+β)))  ⇒A_(ΔADB) =(a^2 /2)×((sin γ sin ((π/3)−α))/(sin ((π/3)−α+γ)))  A_(ΔABC) =(a/2)×(((√3)a)/2)=(((√3)a^2 )/4)    A_(Blue) =A_(ΔABC) −A_(ΔBEC) −A_(ΔCFA) −A_(ΔADB)   ⇒A_(Blue) =(a^2 /2)[((√3)/2)−Σ((sin α sin ((π/3)−β))/(sin ((π/3)−β+α)))]  ⇒A_(Blue) =(a^2 /2)[((√3)/2)−((sin α sin ((π/3)−β))/(sin ((π/3)−β+α)))−((sin β sin ((π/3)−γ))/(sin ((π/3)−γ+β)))−((sin γ sin ((π/3)−α))/(sin ((π/3)−α+γ)))]    if α=β=γ=θ:  ⇒A_(Blue) =(a^2 /2)[((√3)/2)−3((sin θ sin ((π/3)−θ))/(sin ((π/3))))]  =(a^2 /2)[((√3)/2)−(√3) sin θ ((√3) cos θ−sin θ)]  =(a^2 /2)[((√3)/2)−(3/2) sin 2θ +((√3)/2) (1−cos 2θ)]  =(a^2 /2)[(√3)−(√3)(sin (π/3) sin 2θ +cos (π/3) cos 2θ)]  ⇒A_(Blue) =(((√3)a^2 )/2)[1− cos ((π/3)−2θ)]  or  ⇒A_(Blue) =(√3)a^2 sin^2  ((π/6)−θ)

Ihaveconsideredfollowingmethod:BEC=πα(π3β)=π(π3+αβ)BEsin(π3β)=BCsin[π(π3+αβ)]BE=sin(π3β)asin(π3β+α)AΔBEC=a2×BE×sinαAΔBEC=a22×sinαsin(π3β)sin(π3β+α)AΔCFA=a22×sinβsin(π3γ)sin(π3γ+β)AΔADB=a22×sinγsin(π3α)sin(π3α+γ)AΔABC=a2×3a2=3a24ABlue=AΔABCAΔBECAΔCFAAΔADBABlue=a22[32Σsinαsin(π3β)sin(π3β+α)]ABlue=a22[32sinαsin(π3β)sin(π3β+α)sinβsin(π3γ)sin(π3γ+β)sinγsin(π3α)sin(π3α+γ)]ifα=β=γ=θ:ABlue=a22[323sinθsin(π3θ)sin(π3)]=a22[323sinθ(3cosθsinθ)]=a22[3232sin2θ+32(1cos2θ)]=a22[33(sinπ3sin2θ+cosπ3cos2θ)]ABlue=3a22[1cos(π32θ)]orABlue=3a2sin2(π6θ)

Commented by ajfour last updated on 14/Feb/18

Much better, Indeed ! Sir.

Muchbetter,Indeed!Sir.

Commented by mrW2 last updated on 15/Feb/18

Using this method we can also find  A_(Blue)  in an arbitrary triangle with side  lengths a,b,c:  A_(Blue) =(1/4)(√((a+b+c)(a+b−c)(a−b+c)(−a+b+c)))−(1/2)[((a^2  sin α sin ((π/3)−β))/(sin ((π/3)−β+α)))+((b^(2 ) sin β sin ((π/3)−γ))/(sin ((π/3)−γ+β)))+((c^2  sin γ sin ((π/3)−α))/(sin ((π/3)−α+γ)))]

UsingthismethodwecanalsofindABlueinanarbitrarytrianglewithsidelengthsa,b,c:ABlue=14(a+b+c)(a+bc)(ab+c)(a+b+c)12[a2sinαsin(π3β)sin(π3β+α)+b2sinβsin(π3γ)sin(π3γ+β)+c2sinγsin(π3α)sin(π3α+γ)]

Commented by ajfour last updated on 16/Feb/18

Thank you Sir.   (conclusion: Area is easily obtained   from areas.)

ThankyouSir.(conclusion:Areaiseasilyobtainedfromareas.)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com