Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 29924 by ajfour last updated on 13/Feb/18

Commented by ajfour last updated on 13/Feb/18

On a plank a small block m is  kept. The plank is free to rotate  about a horizontal axis at its end.  If released as shown, find  angle, angular velocity of plank  when normal reaction between  plank and block becomes zero.  (Assume friction coefficient 𝛍).

$${On}\:{a}\:{plank}\:{a}\:{small}\:{block}\:{m}\:{is} \\ $$$${kept}.\:{The}\:{plank}\:{is}\:{free}\:{to}\:{rotate} \\ $$$${about}\:{a}\:{horizontal}\:{axis}\:{at}\:{its}\:{end}. \\ $$$${If}\:{released}\:{as}\:{shown},\:{find} \\ $$$${angle},\:{angular}\:{velocity}\:{of}\:{plank} \\ $$$${when}\:{normal}\:{reaction}\:{between} \\ $$$${plank}\:{and}\:{block}\:{becomes}\:{zero}. \\ $$$$\left({Assume}\:{friction}\:{coefficient}\:\boldsymbol{\mu}\right). \\ $$

Commented by 33 last updated on 13/Feb/18

nice question sir

$${nice}\:{question}\:{sir} \\ $$

Commented by ajfour last updated on 13/Feb/18

Commented by mrW2 last updated on 15/Feb/18

the normal force gets to zero, when  the block reaches the position x=((2L)/3).  But the coresponding angle positio θ  seems not to be in relation with x,  therefore I have no solution.

$${the}\:{normal}\:{force}\:{gets}\:{to}\:{zero},\:{when} \\ $$$${the}\:{block}\:{reaches}\:{the}\:{position}\:{x}=\frac{\mathrm{2}{L}}{\mathrm{3}}. \\ $$$${But}\:{the}\:{coresponding}\:{angle}\:{positio}\:\theta \\ $$$${seems}\:{not}\:{to}\:{be}\:{in}\:{relation}\:{with}\:{x}, \\ $$$${therefore}\:{I}\:{have}\:{no}\:{solution}. \\ $$

Commented by ajfour last updated on 15/Feb/18

let us assume a or b is much less  and slipping begins when θ=θ_1   after that gsin θ increases  gcos θ decreases N must become  zero for some x thereafter ..

$${let}\:{us}\:{assume}\:{a}\:{or}\:{b}\:{is}\:{much}\:{less} \\ $$$${and}\:{slipping}\:{begins}\:{when}\:\theta=\theta_{\mathrm{1}} \\ $$$${after}\:{that}\:{g}\mathrm{sin}\:\theta\:{increases} \\ $$$${g}\mathrm{cos}\:\theta\:{decreases}\:{N}\:{must}\:{become} \\ $$$${zero}\:{for}\:{some}\:\boldsymbol{{x}}\:{thereafter}\:.. \\ $$

Answered by mrW2 last updated on 13/Feb/18

Commented by mrW2 last updated on 14/Feb/18

phase 1: no slip between block and plank  x=b=constant (b replaces a in question)  ω=(dθ/dt)  α=(dω/dt)  v_θ =xω=bω  v_r =(dx/dt)=0  mg cos θ−N=mbα  ⇒N=m(g cos θ−bα)  f−mg sin θ=mbω^2   ⇒f=m(g sin θ+bω^2 )  ((ML^2 )/3)α=Nb+Mg((Lcos θ)/2)  ((ML^2 )/3)α=mb(g cos θ−bα)+Mg((Lcos θ)/2)  (((ML^2 +3mb^2 )/3))α=(((2mb+ML)gcos θ)/2)  ⇒α=((3(2mb+ML)g)/(2(ML^2 +3mb^2 )))cos θ  ⇒ω(dω/dθ)=((3(2mb+ML)g)/(2(ML^2 +3mb^2 )))cos θ  ⇒∫_0 ^ω ωdω=((3(2mb+ML)g)/(2(ML^2 +3mb^2 )))∫_0 ^θ cos θ dθ  ⇒(ω^2 /2)=((3(2mb+ML)g)/(2(ML^2 +3mb^2 ))) sin θ  ⇒ω^2 =((3(2mb+ML)g)/((ML^2 +3mb^2 ))) sin θ  ⇒f=mg[1+((3b(2mb+ML))/((ML^2 +3mb^2 )))]sin θ  ⇒f=[((ML^2 +9mb^2 +3MLb)/(ML^2 +3mb^2 ))]mg sin θ  ⇒N=mg[1−((3b(2mb+ML))/(2(ML^2 +3mb^2 )))]cos θ  ⇒N=[((ML(2L−3b))/(2(ML^2 +3mb^2 )))]mg cos θ  (f/N)=((ML^2 +9mb^2 +3MLb)/(ML^2 +3mb^2 ))×((2(ML^2 +3mb^2 ))/(ML(2L−3b)))×tan θ  ⇒(f/N)=((2(ML^2 +9mb^2 +3MLb))/(ML(2L−3b)))×tan θ=μ  tan θ_1 =((μML(2L−3b))/(2(ML^2 +9mb^2 +3MLb)))  θ_1 =tan^(−1) {((μML(2L−3b))/(2(ML^2 +9mb^2 +3MLb)))}  with η=(m/M) and λ=(b/L)  ⇒θ_1 =tan^(−1) {((μ(2−3λ))/(2(1+3λ+9ηλ^2 )))}  i.e. at θ=θ_1  block m begins to slip.  E.g. η=(m/M)=0.5, λ=(b/L)=0.25, μ=1  ⇒θ_1 =tan^(−1) {((1×(2−3×0.25))/(2(1+3×0.25+9×0.5×0.25^2 )))}=17.1°    at θ=θ_1 :  N_1 =[((2−3λ)/(2(1+3ηλ^2 )))]mg cos θ_1   ω_1 =(√(((3(1+2ηλ)g)/(L(1+3ηλ^2 ))) sin θ_1 ))    in phase 1 the reaction force N is  always more than zero if λ<(2/3),  i.e. if b<(2/3)L.

$${phase}\:\mathrm{1}:\:{no}\:{slip}\:{between}\:{block}\:{and}\:{plank} \\ $$$${x}={b}={constant}\:\left({b}\:{replaces}\:{a}\:{in}\:{question}\right) \\ $$$$\omega=\frac{{d}\theta}{{dt}} \\ $$$$\alpha=\frac{{d}\omega}{{dt}} \\ $$$${v}_{\theta} ={x}\omega={b}\omega \\ $$$${v}_{{r}} =\frac{{dx}}{{dt}}=\mathrm{0} \\ $$$${mg}\:\mathrm{cos}\:\theta−{N}={mb}\alpha \\ $$$$\Rightarrow{N}={m}\left({g}\:\mathrm{cos}\:\theta−{b}\alpha\right) \\ $$$${f}−{mg}\:\mathrm{sin}\:\theta={mb}\omega^{\mathrm{2}} \\ $$$$\Rightarrow{f}={m}\left({g}\:\mathrm{sin}\:\theta+{b}\omega^{\mathrm{2}} \right) \\ $$$$\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}\alpha={Nb}+{Mg}\frac{{L}\mathrm{cos}\:\theta}{\mathrm{2}} \\ $$$$\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}\alpha={mb}\left({g}\:\mathrm{cos}\:\theta−{b}\alpha\right)+{Mg}\frac{{L}\mathrm{cos}\:\theta}{\mathrm{2}} \\ $$$$\left(\frac{{ML}^{\mathrm{2}} +\mathrm{3}{mb}^{\mathrm{2}} }{\mathrm{3}}\right)\alpha=\frac{\left(\mathrm{2}{mb}+{ML}\right){g}\mathrm{cos}\:\theta}{\mathrm{2}} \\ $$$$\Rightarrow\alpha=\frac{\mathrm{3}\left(\mathrm{2}{mb}+{ML}\right){g}}{\mathrm{2}\left({ML}^{\mathrm{2}} +\mathrm{3}{mb}^{\mathrm{2}} \right)}\mathrm{cos}\:\theta \\ $$$$\Rightarrow\omega\frac{{d}\omega}{{d}\theta}=\frac{\mathrm{3}\left(\mathrm{2}{mb}+{ML}\right){g}}{\mathrm{2}\left({ML}^{\mathrm{2}} +\mathrm{3}{mb}^{\mathrm{2}} \right)}\mathrm{cos}\:\theta \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\omega} \omega{d}\omega=\frac{\mathrm{3}\left(\mathrm{2}{mb}+{ML}\right){g}}{\mathrm{2}\left({ML}^{\mathrm{2}} +\mathrm{3}{mb}^{\mathrm{2}} \right)}\int_{\mathrm{0}} ^{\theta} \mathrm{cos}\:\theta\:{d}\theta \\ $$$$\Rightarrow\frac{\omega^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{3}\left(\mathrm{2}{mb}+{ML}\right){g}}{\mathrm{2}\left({ML}^{\mathrm{2}} +\mathrm{3}{mb}^{\mathrm{2}} \right)}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\omega^{\mathrm{2}} =\frac{\mathrm{3}\left(\mathrm{2}{mb}+{ML}\right){g}}{\left({ML}^{\mathrm{2}} +\mathrm{3}{mb}^{\mathrm{2}} \right)}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow{f}={mg}\left[\mathrm{1}+\frac{\mathrm{3}{b}\left(\mathrm{2}{mb}+{ML}\right)}{\left({ML}^{\mathrm{2}} +\mathrm{3}{mb}^{\mathrm{2}} \right)}\right]\mathrm{sin}\:\theta \\ $$$$\Rightarrow{f}=\left[\frac{{ML}^{\mathrm{2}} +\mathrm{9}{mb}^{\mathrm{2}} +\mathrm{3}{MLb}}{{ML}^{\mathrm{2}} +\mathrm{3}{mb}^{\mathrm{2}} }\right]{mg}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow{N}={mg}\left[\mathrm{1}−\frac{\mathrm{3}{b}\left(\mathrm{2}{mb}+{ML}\right)}{\mathrm{2}\left({ML}^{\mathrm{2}} +\mathrm{3}{mb}^{\mathrm{2}} \right)}\right]\mathrm{cos}\:\theta \\ $$$$\Rightarrow{N}=\left[\frac{{ML}\left(\mathrm{2}{L}−\mathrm{3}{b}\right)}{\mathrm{2}\left({ML}^{\mathrm{2}} +\mathrm{3}{mb}^{\mathrm{2}} \right)}\right]{mg}\:\mathrm{cos}\:\theta \\ $$$$\frac{{f}}{{N}}=\frac{{ML}^{\mathrm{2}} +\mathrm{9}{mb}^{\mathrm{2}} +\mathrm{3}{MLb}}{{ML}^{\mathrm{2}} +\mathrm{3}{mb}^{\mathrm{2}} }×\frac{\mathrm{2}\left({ML}^{\mathrm{2}} +\mathrm{3}{mb}^{\mathrm{2}} \right)}{{ML}\left(\mathrm{2}{L}−\mathrm{3}{b}\right)}×\mathrm{tan}\:\theta \\ $$$$\Rightarrow\frac{{f}}{{N}}=\frac{\mathrm{2}\left({ML}^{\mathrm{2}} +\mathrm{9}{mb}^{\mathrm{2}} +\mathrm{3}{MLb}\right)}{{ML}\left(\mathrm{2}{L}−\mathrm{3}{b}\right)}×\mathrm{tan}\:\theta=\mu \\ $$$$\mathrm{tan}\:\theta_{\mathrm{1}} =\frac{\mu{ML}\left(\mathrm{2}{L}−\mathrm{3}{b}\right)}{\mathrm{2}\left({ML}^{\mathrm{2}} +\mathrm{9}{mb}^{\mathrm{2}} +\mathrm{3}{MLb}\right)} \\ $$$$\theta_{\mathrm{1}} =\mathrm{tan}^{−\mathrm{1}} \left\{\frac{\mu{ML}\left(\mathrm{2}{L}−\mathrm{3}{b}\right)}{\mathrm{2}\left({ML}^{\mathrm{2}} +\mathrm{9}{mb}^{\mathrm{2}} +\mathrm{3}{MLb}\right)}\right\} \\ $$$${with}\:\eta=\frac{{m}}{{M}}\:{and}\:\lambda=\frac{{b}}{{L}} \\ $$$$\Rightarrow\theta_{\mathrm{1}} =\mathrm{tan}^{−\mathrm{1}} \left\{\frac{\mu\left(\mathrm{2}−\mathrm{3}\lambda\right)}{\mathrm{2}\left(\mathrm{1}+\mathrm{3}\lambda+\mathrm{9}\eta\lambda^{\mathrm{2}} \right)}\right\} \\ $$$${i}.{e}.\:{at}\:\theta=\theta_{\mathrm{1}} \:{block}\:{m}\:{begins}\:{to}\:{slip}. \\ $$$${E}.{g}.\:\eta=\frac{{m}}{{M}}=\mathrm{0}.\mathrm{5},\:\lambda=\frac{{b}}{{L}}=\mathrm{0}.\mathrm{25},\:\mu=\mathrm{1} \\ $$$$\Rightarrow\theta_{\mathrm{1}} =\mathrm{tan}^{−\mathrm{1}} \left\{\frac{\mathrm{1}×\left(\mathrm{2}−\mathrm{3}×\mathrm{0}.\mathrm{25}\right)}{\mathrm{2}\left(\mathrm{1}+\mathrm{3}×\mathrm{0}.\mathrm{25}+\mathrm{9}×\mathrm{0}.\mathrm{5}×\mathrm{0}.\mathrm{25}^{\mathrm{2}} \right)}\right\}=\mathrm{17}.\mathrm{1}° \\ $$$$ \\ $$$${at}\:\theta=\theta_{\mathrm{1}} : \\ $$$${N}_{\mathrm{1}} =\left[\frac{\mathrm{2}−\mathrm{3}\lambda}{\mathrm{2}\left(\mathrm{1}+\mathrm{3}\eta\lambda^{\mathrm{2}} \right)}\right]{mg}\:\mathrm{cos}\:\theta_{\mathrm{1}} \\ $$$$\omega_{\mathrm{1}} =\sqrt{\frac{\mathrm{3}\left(\mathrm{1}+\mathrm{2}\eta\lambda\right){g}}{{L}\left(\mathrm{1}+\mathrm{3}\eta\lambda^{\mathrm{2}} \right)}\:\mathrm{sin}\:\theta_{\mathrm{1}} } \\ $$$$ \\ $$$${in}\:{phase}\:\mathrm{1}\:{the}\:{reaction}\:{force}\:{N}\:{is} \\ $$$${always}\:{more}\:{than}\:{zero}\:{if}\:\lambda<\frac{\mathrm{2}}{\mathrm{3}}, \\ $$$${i}.{e}.\:{if}\:{b}<\frac{\mathrm{2}}{\mathrm{3}}{L}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com