Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29971 by abdo imad last updated on 14/Feb/18

find J(x)= ∫_0 ^∞   (dt/(x+e^t ))    ?.

$${find}\:{J}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{x}+{e}^{{t}} }\:\:\:\:?. \\ $$

Commented by abdo imad last updated on 16/Feb/18

J(x)= ∫_0 ^∞    (dt/(e^t ( 1+x e^(−t) ))) =∫_0 ^∞  e^(−t)  (Σ_(n=0) ^∞  x^n e^(−nt) )dt  = Σ_(n=0) ^∞   x^n   ∫_0 ^∞  e^(−(n+1)t) dt  the (n+1)t=u give  ∫_0 ^∞   e^(−(n+1)t) dt= ∫_0 ^∞  e^(−u)  (du/(n+1)) =(1/(n+1)) [−e^(−u) ]_0 ^(+∞)  =(1/(n+1))  J(x)= Σ_(n=0) ^∞   (x^n /(n+1)) ⇒ x J(x)=Σ_(n=0) ^∞  (x^(n+1) /(n+1)) let derivate  J(x) +xJ^′ (x)= Σ_(n=0) ^∞  x^n  = (1/(1−x)) so J is solution of the  d.e y +xy^′   =(1/(1−x))  eh⇒ xy^′ =−y ⇒(y^′ /y) =((−1)/x) ⇒  ln∣y∣= −ln∣x∣+c ⇒y= (λ/x)  mvc method give  y^′  =((λ^′ x −λ)/x^2 ) ⇒(λ/x) +λ^′  −(λ/x) = (1/(1−x)) ⇒λ(x)=∫ (dx/(1−x)) +κ  =−ln∣1−x∣ +k but k=λ(0)=0  y(x)=−(1/x)ln∣1−x∣ ⇒ J(x)=−(1/x)ln∣1−x∣ .

$${J}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{{e}^{{t}} \left(\:\mathrm{1}+{x}\:{e}^{−{t}} \right)}\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} \:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{{n}} {e}^{−{nt}} \right){dt} \\ $$$$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{x}^{{n}} \:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({n}+\mathrm{1}\right){t}} {dt}\:\:{the}\:\left({n}+\mathrm{1}\right){t}={u}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({n}+\mathrm{1}\right){t}} {dt}=\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}} \:\frac{{du}}{{n}+\mathrm{1}}\:=\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\left[−{e}^{−{u}} \right]_{\mathrm{0}} ^{+\infty} \:=\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$${J}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} }{{n}+\mathrm{1}}\:\Rightarrow\:{x}\:{J}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:{let}\:{derivate} \\ $$$${J}\left({x}\right)\:+{xJ}^{'} \left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{1}−{x}}\:{so}\:{J}\:{is}\:{solution}\:{of}\:{the} \\ $$$${d}.{e}\:{y}\:+{xy}^{'} \:\:=\frac{\mathrm{1}}{\mathrm{1}−{x}}\:\:{eh}\Rightarrow\:{xy}^{'} =−{y}\:\Rightarrow\frac{{y}^{'} }{{y}}\:=\frac{−\mathrm{1}}{{x}}\:\Rightarrow \\ $$$${ln}\mid{y}\mid=\:−{ln}\mid{x}\mid+{c}\:\Rightarrow{y}=\:\frac{\lambda}{{x}}\:\:{mvc}\:{method}\:{give} \\ $$$${y}^{'} \:=\frac{\lambda^{'} {x}\:−\lambda}{{x}^{\mathrm{2}} }\:\Rightarrow\frac{\lambda}{{x}}\:+\lambda^{'} \:−\frac{\lambda}{{x}}\:=\:\frac{\mathrm{1}}{\mathrm{1}−{x}}\:\Rightarrow\lambda\left({x}\right)=\int\:\frac{{dx}}{\mathrm{1}−{x}}\:+\kappa \\ $$$$=−{ln}\mid\mathrm{1}−{x}\mid\:+{k}\:{but}\:{k}=\lambda\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${y}\left({x}\right)=−\frac{\mathrm{1}}{{x}}{ln}\mid\mathrm{1}−{x}\mid\:\Rightarrow\:{J}\left({x}\right)=−\frac{\mathrm{1}}{{x}}{ln}\mid\mathrm{1}−{x}\mid\:. \\ $$

Commented by abdo imad last updated on 16/Feb/18

the Q. is find J(x)=∫_0 ^∞   (dt/(x +e^t )) with ∣x∣<1.

$${the}\:{Q}.\:{is}\:{find}\:{J}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{x}\:+{e}^{{t}} }\:{with}\:\mid{x}\mid<\mathrm{1}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com