All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 29971 by abdo imad last updated on 14/Feb/18
findJ(x)=∫0∞dtx+et?.
Commented by abdo imad last updated on 16/Feb/18
J(x)=∫0∞dtet(1+xe−t)=∫0∞e−t(∑n=0∞xne−nt)dt=∑n=0∞xn∫0∞e−(n+1)tdtthe(n+1)t=ugive∫0∞e−(n+1)tdt=∫0∞e−udun+1=1n+1[−e−u]0+∞=1n+1J(x)=∑n=0∞xnn+1⇒xJ(x)=∑n=0∞xn+1n+1letderivateJ(x)+xJ′(x)=∑n=0∞xn=11−xsoJissolutionofthed.ey+xy′=11−xeh⇒xy′=−y⇒y′y=−1x⇒ln∣y∣=−ln∣x∣+c⇒y=λxmvcmethodgivey′=λ′x−λx2⇒λx+λ′−λx=11−x⇒λ(x)=∫dx1−x+κ=−ln∣1−x∣+kbutk=λ(0)=0y(x)=−1xln∣1−x∣⇒J(x)=−1xln∣1−x∣.
theQ.isfindJ(x)=∫0∞dtx+etwith∣x∣<1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com