All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 29973 by abdo imad last updated on 14/Feb/18
find∑n=1∞sin(nα)nxnwith−1<x<1.
Commented byabdo imad last updated on 16/Feb/18
letputS(x)=∑n=1∞sin(nα)nxnduetouniformconvergence wehaveS′(x)=∑n=1∞sin(nα)xn−1=∑n=0∞sin((n+1)α)xn =Im(∑n=0∞ei(n+1)αxn)=Im(eiα∑n=0∞(xeiα)n)wehave ∣xeiα∣<1⇒eiα∑n=0∞(xeiα)n=eiα11−xeiα=1e−iα−x =1cosα−isinα−x=1cosα−x−isinα =cosα−x+isinα(cosα−x)2+sin2α⇒Im(Σ(...))=sinα(x−cosα)2+sin2α⇒ S(x)=∫0xsinα(t−cosα)2+sin2αdt+λbutλ=S(0)=0 thech.t−cosα=sinαugive S(x)=∫−cotanαx−cosαsinαsinαsin2u2+sin2αsinαdu =∫−cotanαx−cosαsinαdu1+u2=[arctanu]−cotanαx−cosαsinα =artan(x−cosαsinα)+artan(cotanα).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com