All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 29975 by abdo imad last updated on 14/Feb/18
letgive0<α<1 1)provethatπcoth(πα)−1α=∑n=1∞2αα2+n2. 2)byintegrationon[0,1]find∏n=1∞(1+1n2).
Commented byabdo imad last updated on 16/Feb/18
1)letdeveloppthe2πperiodicfunctionf(x)=ch(αx) f(x)=a02+∑n=1∞ancos(nx) an=2T∫[T]f(x)cos(nx)dx=22π∫−ππch(αx)cos(nx)dx =2π∫0πch(αx)cos(nx)dx⇒π2an=∫0πeαx+e−αx2cos(nx)dx πan=∫0πeαxcos(nx)dx+∫0πe−αxcos(nx)dx=I(α)+I(−α) I(α)=Re(∫0πeαx+inxdx)=Re(∫0πe(α+in)xdx)but ∫0πe(α+in)xdx=[1α+ine(α+in)x]0π=1α+in(eαπ(−1)n−1) =α−inα2+n2((−1)neαπ−1)⇒I(α)=α((−1)neαπ−1)α2+n2 I(−α)=−α((−1)ne−απ−1)α2+n2 πan=α(−1)n(eαπ−e−απ)α2+n2=2α(−1)nsh(απ)α2+n2⇒ an=2παsh(απ)(−1)nα2+n2anda0=2πsh(απ)α⇒ ch(αx)=sh(απ)πα+2αsh(απ)π∑n=1∞(−1)nα2+n2cos(nx) x=π⇒ch(πα)=sh(απ)πα+2αsh(απ)π∑n=1∞1α2+n2⇒ coth(πα)=1πα+2απ∑n=1∞1α2+n2⇒ πcoth(πα)−1α=∑n=1∞2αα2+n2.
wehave∫01(πcoth(πα)−1α)dα=∑n=1∞∫012αα2+n2dα =∑n=1∞[ln(α2+n2)]01=∑n=1∞ln(1+n2)−ln(n2)=∑n=1∞ln(1+1n2) =ln(∏n=1∞(1+1n2))⇒ ∏n=1∞(1+1n2)=e∫01(πcoth(πα)−1α)dαbutch.απ=tgive ∫01απcoth(απ)−1αdα=∫0πtcotht−1tπdtπ =∫0πtcoth(t)−1tdt=∫0π(et−e−tet+e−t−1t)dt....becontinued... π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com