Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29975 by abdo imad last updated on 14/Feb/18

 let give 0<α<1  1) prove that  π coth(πα) −(1/α) =  Σ_(n=1) ^∞     ((2α)/(α^2  +n^2 )).  2)by integration on[0,1] find Π_(n=1) ^∞  (1+(1/n^2 )).

letgive0<α<1 1)provethatπcoth(πα)1α=n=12αα2+n2. 2)byintegrationon[0,1]findn=1(1+1n2).

Commented byabdo imad last updated on 16/Feb/18

1)let developp the 2π periodic function f(x)=ch(αx)  f(x)=(a_0 /2) +Σ_(n=1) ^∞  a_n  cos(nx)  a_n =(2/T) ∫_([T])  f(x)cos(nx)dx= (2/(2π)) ∫_(−π) ^π  ch(αx)cos(nx)dx  =(2/π) ∫_0 ^π  ch(αx)cos(nx)dx⇒(π/2)a_n = ∫_0 ^π  ((e^(αx)  +e^(−αx) )/2)cos(nx)dx  π a_n = ∫_0 ^π  e^(αx)  cos(nx)dx +∫_0 ^π  e^(−αx) cos(nx)dx =I(α) +I(−α)  I(α) =Re( ∫_0 ^π   e^(αx+inx) dx)=Re( ∫_0 ^π   e^((α+in)x) dx)but  ∫_0 ^π   e^((α+in)x) dx =[(1/(α+in)) e^((α+in)x) ]_0 ^π   =(1/(α+in))( e^(απ) (−1)^n  −1)  =((α−in)/(α^2 +n^2 ))( (−1)^n  e^(απ) −1) ⇒ I(α)= ((α( (−1)^n e^(απ) −1))/(α^2 +n^2 ))  I(−α)= ((−α((−1)^n e^(−απ)  −1))/(α^2 +n^2 ))  πa_n =((α(−1)^n (e^(απ) − e^(−απ) ))/(α^2 +n^2 ))=((2α(−1)^n sh(απ))/(α^2  +n^2 ))⇒  a_n =(2/π) α sh(απ) (((−1)^n )/(α^2  +n^2 )) and  a_0 =(2/π) ((sh(απ))/α) ⇒  ch(αx)= ((sh(απ))/(πα))  + ((2αsh(απ))/π) Σ_(n=1) ^∞  (((−1)^n )/(α^2  +n^2 ))cos(nx)   x=π ⇒ch(πα)=((sh(απ))/(πα)) +((2αsh(απ))/π)Σ_(n=1) ^∞   (1/(α^2 +n^2 )) ⇒  coth(πα)=(1/(πα)) +((2α)/π)Σ_(n=1) ^∞   (1/(α^2  +n^2 )) ⇒  π coth(πα)−(1/α) = Σ_(n=1) ^(∞ )   ((2α)/(α^2  +n^2 )).

1)letdeveloppthe2πperiodicfunctionf(x)=ch(αx) f(x)=a02+n=1ancos(nx) an=2T[T]f(x)cos(nx)dx=22πππch(αx)cos(nx)dx =2π0πch(αx)cos(nx)dxπ2an=0πeαx+eαx2cos(nx)dx πan=0πeαxcos(nx)dx+0πeαxcos(nx)dx=I(α)+I(α) I(α)=Re(0πeαx+inxdx)=Re(0πe(α+in)xdx)but 0πe(α+in)xdx=[1α+ine(α+in)x]0π=1α+in(eαπ(1)n1) =αinα2+n2((1)neαπ1)I(α)=α((1)neαπ1)α2+n2 I(α)=α((1)neαπ1)α2+n2 πan=α(1)n(eαπeαπ)α2+n2=2α(1)nsh(απ)α2+n2 an=2παsh(απ)(1)nα2+n2anda0=2πsh(απ)α ch(αx)=sh(απ)πα+2αsh(απ)πn=1(1)nα2+n2cos(nx) x=πch(πα)=sh(απ)πα+2αsh(απ)πn=11α2+n2 coth(πα)=1πα+2απn=11α2+n2 πcoth(πα)1α=n=12αα2+n2.

Commented byabdo imad last updated on 16/Feb/18

we have ∫_0 ^1 (πcoth(πα)−(1/α))dα =Σ_(n=1) ^∞ ∫_0 ^1  ((2α)/(α^2  +n^2 ))dα  =Σ_(n=1) ^∞ [ ln(α^2  +n^2 )]_0 ^1  =Σ_(n=1) ^∞ ln(1+n^2 )−ln(n^2 )=Σ_(n=1) ^∞ ln(1+(1/n^2 ))  =ln(Π_(n=1) ^∞  (1 +(1/n^2 ))) ⇒  Π_(n=1) ^∞  (1+(1/n^2 ))= e^(∫_0 ^1  (πcoth(πα) −(1/α))dα)   but  ch.απ=t give  ∫_0 ^1 ((απcoth(απ) −1)/α)dα= ∫_0 ^π  ((t cotht −1)/(t/π)) (dt/π)  = ∫_0 ^π   ((tcoth(t)−1)/t)dt= ∫_0 ^π ( ((e^t −e^(−t) )/(e^t +e^(−t) )) −(1/t))dt....be continued...  π

wehave01(πcoth(πα)1α)dα=n=1012αα2+n2dα =n=1[ln(α2+n2)]01=n=1ln(1+n2)ln(n2)=n=1ln(1+1n2) =ln(n=1(1+1n2)) n=1(1+1n2)=e01(πcoth(πα)1α)dαbutch.απ=tgive 01απcoth(απ)1αdα=0πtcotht1tπdtπ =0πtcoth(t)1tdt=0π(etetet+et1t)dt....becontinued... π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com