All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 29978 by abdo imad last updated on 14/Feb/18
letgivex>0 1)provethat∫01dt1+tx=∑n=0∞(−1)nnx+1 2)find∑n=0∞(−1)nn+1and∑n=0∞(−1)n2n+1 3)find∑n=1∞(−1)n3n+1.
Commented byabdo imad last updated on 16/Feb/18
1)fort∈]0,1]tx=exlnt<1⇒∫01dt1+tx=∫01(∑n=0∞(−1)ntnx)dt =∑n=0∞(−1)n∫01tnxdt=∑n=0∞(−1)nnx+1 2)wehaveprovedthatA(x)=∑n=0∞(−1)nnx+1=∫01dt1+tx⇒ ∑n=0∞(−1)nn+1=A(1)=∫01dt1+t=[ln(1+t)]01=ln(2) ∑n=0∞(−1)n2n+1=A(2)=∫01dt1+t2=[arctant]01=π4 3)wehave∑n=0∞(−1)n3n+1=A(3)=∫01dt1+t3 wehave∫0∞dt1+t3=∫01dt1+t3+∫1+∞dt1+t3thech.t=1ugive ∫1∞dt1+t3=∫0111+1u3duu2=∫01duu2+1u=∫01udu1+u2 =12[ln(1+u2)]01=12ln2thech.t3=ugive ∫0∞dt1+t3=∫0∞11+u13u13−1du=13∫0∞u13−11+udu =13πsin(π3)=π3132=2π33⇒ ∫01dt1+t3=∫0∞dt1+t3−∫1+∞dt1+t3=2π33−12ln(2)⇒ ∑n=0∞(−1)n3n+1=2π33−12ln(2).
forQ3)wehaveusedtheresult∫0∞ta−11+tdt=πsin(πa) with0<a<1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com