Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 29978 by abdo imad last updated on 14/Feb/18

let give x>0  1) prove that   ∫_0 ^1     (dt/(1+t^x ))= Σ_(n=0) ^∞    (((−1)^n )/(nx+1))  2) find Σ_(n=0) ^∞   (((−1)^n )/(n+1))  and Σ_(n=0) ^∞   (((−1)^n )/(2n+1))  3) find Σ_(n=1) ^∞    (((−1)^n )/(3n+1)) .

letgivex>0 1)provethat01dt1+tx=n=0(1)nnx+1 2)findn=0(1)nn+1andn=0(1)n2n+1 3)findn=1(1)n3n+1.

Commented byabdo imad last updated on 16/Feb/18

1) for t∈]0,1]  t^x  =e^(xlnt) <1 ⇒ ∫_0 ^1   (dt/(1+t^x ))=∫_0 ^1  (Σ_(n=0) ^∞ (−1)^n t^(nx) )dt  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  t^(nx) dt=Σ_(n=0) ^∞  (((−1)^n )/(nx +1))  2) we have proved that A(x)=Σ_(n=0) ^∞  (((−1)^n )/(nx+1))=∫_0 ^1    (dt/(1+t^x ))⇒  Σ_(n=0) ^∞   (((−1)^n )/(n+1))=A(1)=∫_0 ^1  (dt/(1+t))=[ln(1+t)]_0 ^1   =ln(2)  Σ_(n=0) ^∞   (((−1)^n )/(2n+1))=A(2)=∫_0 ^1   (dt/(1+t^2 ))=[arctant]_0 ^1 =(π/4)  3)we have Σ_(n=0) ^∞  (((−1)^n )/(3n+1))= A(3) = ∫_0 ^1   (dt/(1+t^3 ))   we have  ∫_0 ^∞ (dt/(1+t^3 )) = ∫_0 ^1   (dt/(1+t^3 )) +∫_1 ^(+∞)   (dt/(1+t^3 )) the ch. t=(1/u) give  ∫_1 ^∞   (dt/(1+t^3 ))=∫_0 ^1    (1/(1+(1/u^3 ))) (du/u^2 )= ∫_0 ^1      (du/(u^2 +(1/u))) =∫_0 ^1  ((udu)/(1+u^2 ))  =(1/2)[ln(1+u^2 )]_0 ^1  =(1/2)ln2   the ch. t^3 =u give  ∫_0 ^∞  (dt/(1+t^3 )) = ∫_0 ^∞   (1/(1+u))(1/3)u^((1/3)−1) du =(1/3)∫_0 ^∞  (u^((1/3)−1) /(1+u))du  =(1/3) (π/(sin((π/3))))=(π/3) (1/((√3)/2)) =((2π)/(3(√3))) ⇒  ∫_0 ^1   (dt/(1+t^3 )) =∫_0 ^∞   (dt/(1+t^3 )) − ∫_1 ^(+∞)  (dt/(1+t^3 ))=((2π)/(3(√3))) −(1/2)ln(2)⇒  Σ_(n=0) ^∞   (((−1)^n )/(3n+1))=((2π)/(3(√3))) −(1/2)ln(2).

1)fort]0,1]tx=exlnt<101dt1+tx=01(n=0(1)ntnx)dt =n=0(1)n01tnxdt=n=0(1)nnx+1 2)wehaveprovedthatA(x)=n=0(1)nnx+1=01dt1+tx n=0(1)nn+1=A(1)=01dt1+t=[ln(1+t)]01=ln(2) n=0(1)n2n+1=A(2)=01dt1+t2=[arctant]01=π4 3)wehaven=0(1)n3n+1=A(3)=01dt1+t3 wehave0dt1+t3=01dt1+t3+1+dt1+t3thech.t=1ugive 1dt1+t3=0111+1u3duu2=01duu2+1u=01udu1+u2 =12[ln(1+u2)]01=12ln2thech.t3=ugive 0dt1+t3=011+u13u131du=130u1311+udu =13πsin(π3)=π3132=2π33 01dt1+t3=0dt1+t31+dt1+t3=2π3312ln(2) n=0(1)n3n+1=2π3312ln(2).

Commented byabdo imad last updated on 16/Feb/18

for Q 3) we have used the result ∫_0 ^∞  (t^(a−1) /(1+t))dt=(π/(sin(πa)))  with 0<a<1 .

forQ3)wehaveusedtheresult0ta11+tdt=πsin(πa) with0<a<1.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com