Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 29979 by abdo imad last updated on 14/Feb/18

find the radius of S(x)= Σ_(n=0) ^∞    (x^(3n+2) /(3n+2))  2)find the value of  Σ_(n=0) ^∞    (1/((3n+2)3^n )).

findtheradiusofS(x)=n=0x3n+23n+22)findthevalueofn=01(3n+2)3n.

Commented by abdo imad last updated on 17/Feb/18

1)for x=0  S(x)=0 for x≠o we have   ∣((u_(n+1) (x))/(u_n (x)))∣=∣ ((x^(3n+5) /(3n+5))/(x^(3n+2) /(3n+2)))∣=((3n+2)/(3n+5)) ∣x∣_(n→∞) ^3  →∣x∣^3  ⇒if ∣x∣<1  the serie converge if ∣x∣≥1 the serie diverge if x=−1  S(−1)= Σ_(n=0) ^∞  (((−1)^n )/(3n+2)) converge(alternate serie) so R=1  2) for ∣x∣<1 and due to uniform convergence we have  S^′ (x)= Σ_(n=0) ^∞   x^(3n+1) =x Σ_(n=0) ^∞  (x^3 )^n =x (1/(1−x^3 )) ⇒  S(x)= ∫  ((xdx)/(1−x^3 )) +λ  let decompose  F(x)= (x/(1−x^3 ))= (x/((1−x)(x^2 +x+1)))= (a/(1−x)) +((bx+c)/(x^2 +x+1))   a=lim_(x→1) (1−x)F(x)= (1/3) so  F(x)= (1/(3(1−x))) +((bx+c)/(x^2  +x+1))  lim_(x→∞)  xF(x)=0=((−1)/3) +b  ⇒b=(1/3)  ⇒  F(x)= (1/(3(1−x)))  +(((1/3)x +c)/(x^2 +x+1))  F(0)=0= (1/3) +c ⇒c=−(1/3) and   F(x)=(1/(3(1−x))) +(1/3) ((x−1)/(x^2 +x+1)) ⇒  ∫ (x/(1−x^3 ))dx=(1/3)( ∫ (dx/(1−x)) + ∫((x−1)/(x^2 +x+1))dx)  3 ∫ (x/(1−x^3 ))dx= ∫ (dx/(1−x)) +(1/2)∫  ((2x+1−3)/(x^2 +x+1))dx  = (1/2)ln(x^2 +x+1)−ln∣1−x∣ −(3/2) ∫    (dx/(x^2 +x+1))  but  ∫   (dx/(x^2 +x+1)) = ∫   (dx/((x+(1/2))^2  +(3/4))) =_(x+(1/2)=((√3)/2)t)    ∫     (1/((3/4)(t^2 +1)))((√3)/2)dt  =(4/3) ((√3)/2) ∫    (dt/(1+t^2 )) = (2/(√3)) artant=(2/(√3))arctan((2/(√3))(x+(1/2)))  3 ∫   (x/(1−x^2 ))dx =ln(((√(x^2 +x+1))/(∣1−x∣)))−(√3)  arctan((1/(√3))(2x+1))  ∫ ((xdx)/(1−x^2 )) =(1/3)ln(((√(x^2 +x+1))/(∣1−x∣))) −((√3)/3) arctan((1/(√3))(2x+1))  S(x)= (1/3)ln(((√(x^2 +x+1))/(∣1−x∣))) −((√3)/3) arctan((1/(√3))(2x+1)) +λ  =A(x)+λ⇒λ=lim_(→0)  S(x)−A(x)=−A(0)  =((√3)/3) arctan((1/(√3)))=((√3)/3) (π/6) =((π(√3))/(18)) and S(x)=Σ_(n=0) ^∞  (x^(3n+2) /(3n+2))  we have  Σ_(n=0) ^∞     (1/((3n+2)3^n ))=Σ_(n=0) ^∞   ((((1/3))^n )/(3n+2))  =(3_(√3) )^2 Σ_(n=0) ^∞     ((((1/3_(√3) ))^(3n+2) )/(3n+2)) =(3_(√3) )^2  S(( 3_(√3) )^(−1) ) the sum S is  known.

1)forx=0S(x)=0forxowehaveun+1(x)un(x)∣=∣x3n+53n+5x3n+23n+2∣=3n+23n+5xn3→∣x3ifx∣<1theserieconvergeifx∣⩾1theseriedivergeifx=1S(1)=n=0(1)n3n+2converge(alternateserie)soR=12)forx∣<1andduetouniformconvergencewehaveS(x)=n=0x3n+1=xn=0(x3)n=x11x3S(x)=xdx1x3+λletdecomposeF(x)=x1x3=x(1x)(x2+x+1)=a1x+bx+cx2+x+1a=limx1(1x)F(x)=13soF(x)=13(1x)+bx+cx2+x+1limxxF(x)=0=13+bb=13F(x)=13(1x)+13x+cx2+x+1F(0)=0=13+cc=13andF(x)=13(1x)+13x1x2+x+1x1x3dx=13(dx1x+x1x2+x+1dx)3x1x3dx=dx1x+122x+13x2+x+1dx=12ln(x2+x+1)ln1x32dxx2+x+1butdxx2+x+1=dx(x+12)2+34=x+12=32t134(t2+1)32dt=4332dt1+t2=23artant=23arctan(23(x+12))3x1x2dx=ln(x2+x+11x)3arctan(13(2x+1))xdx1x2=13ln(x2+x+11x)33arctan(13(2x+1))S(x)=13ln(x2+x+11x)33arctan(13(2x+1))+λ=A(x)+λλ=lim0S(x)A(x)=A(0)=33arctan(13)=33π6=π318andS(x)=n=0x3n+23n+2wehaven=01(3n+2)3n=n=0(13)n3n+2=(33)2n=0(133)3n+23n+2=(33)2S((33)1)thesumSisknown.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com