Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 29981 by abdo imad last updated on 14/Feb/18

find radius and sum of   Σ_(n=0) ^∞     (x^(2n) /(2n+1))  2) find   Σ_(n=0) ^∞      (1/((2n+1)9^n )) .

$${find}\:{radius}\:{and}\:{sum}\:{of}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{9}^{{n}} }\:. \\ $$

Commented by abdo imad last updated on 15/Feb/18

let put  for ∣x∣<1S(x)= Σ_(n=0) ^∞  (x^(2n) /(2n+1))⇒x S(x)=Σ_(n=0) ^∞  (x^(2n+1) /(2n+1)) let derivate  S(x)+xS^′ (x)= Σ_(n=0) ^∞  x^(2n) = (1/(1−x^2 )) ⇒ S is solution of d.e  xy^′  +y = (1/(1−x^2 ))   h.e⇒ xy^′  +y =0 ⇒ (y^′ /y) =−(1/x) ⇒  ln∣y∣=−lnx +c ⇒y= (k/x)   let use m.v.c we have  y^′ =((k^′ x−k)/x^2 )   (e)⇒((k^′ x −k)/x) + (k/x)= (1/(1−x^2 ))⇒k^′ = (1/(1−x^2 ))  k(x)= ∫(dx/(1−x^2 )) +λ =(1/2)( ∫ (dx/(1−x)) +∫ (dx/(1+x))) +λ  =(1/2)ln∣((1+x)/(1−x))∣+λ ⇒S(x) = (1/(2x))ln∣((1+x)/(1−x))∣ +(λ/x)  λ=lim_(x→0) (xS(x)−(1/2)ln∣((1+x)/(1−x))∣) =0 ⇒  S(x)=(1/(2x))ln∣((1+x)/(1−x))∣  with  −1<x<1  .  we have (u_(n+1) /u_n )=((1/(2n+3))/(1/(2n+1)))= ((2n+1)/(2n+3_(n→+∞) )) →1 ⇒R=1  for x=1 or x=−1 the serie diverges.  2)Σ_(n=0) ^∞     (1/((2n+1)9^n ))=Σ_(n=0) ^∞    ((((1/3))^(2n) )/(2n+1)) =S((1/3))  = (3/2)ln∣((4/3)/(2/3))∣=(3/2)ln(2) .

$${let}\:{put}\:\:{for}\:\mid{x}\mid<\mathrm{1}{S}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}\Rightarrow{x}\:{S}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\:{let}\:{derivate} \\ $$$${S}\left({x}\right)+{xS}^{'} \left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{\mathrm{2}{n}} =\:\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\:\Rightarrow\:{S}\:{is}\:{solution}\:{of}\:{d}.{e} \\ $$$${xy}^{'} \:+{y}\:=\:\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:\:{h}.{e}\Rightarrow\:{xy}^{'} \:+{y}\:=\mathrm{0}\:\Rightarrow\:\frac{{y}^{'} }{{y}}\:=−\frac{\mathrm{1}}{{x}}\:\Rightarrow \\ $$$${ln}\mid{y}\mid=−{lnx}\:+{c}\:\Rightarrow{y}=\:\frac{{k}}{{x}}\:\:\:{let}\:{use}\:{m}.{v}.{c}\:{we}\:{have} \\ $$$${y}^{'} =\frac{{k}^{'} {x}−{k}}{{x}^{\mathrm{2}} }\:\:\:\left({e}\right)\Rightarrow\frac{{k}^{'} {x}\:−{k}}{{x}}\:+\:\frac{{k}}{{x}}=\:\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\Rightarrow{k}^{'} =\:\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${k}\left({x}\right)=\:\int\frac{{dx}}{\mathrm{1}−{x}^{\mathrm{2}} }\:+\lambda\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\:\int\:\frac{{dx}}{\mathrm{1}−{x}}\:+\int\:\frac{{dx}}{\mathrm{1}+{x}}\right)\:+\lambda \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\mid+\lambda\:\Rightarrow{S}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}{x}}{ln}\mid\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\mid\:+\frac{\lambda}{{x}} \\ $$$$\lambda={lim}_{{x}\rightarrow\mathrm{0}} \left({xS}\left({x}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\mid\right)\:=\mathrm{0}\:\Rightarrow \\ $$$${S}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}{x}}{ln}\mid\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\mid\:\:{with}\:\:−\mathrm{1}<{x}<\mathrm{1}\:\:. \\ $$$${we}\:{have}\:\frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }=\frac{\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{3}}}{\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}}=\:\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}{n}+\mathrm{3}_{{n}\rightarrow+\infty} }\:\rightarrow\mathrm{1}\:\Rightarrow{R}=\mathrm{1} \\ $$$${for}\:{x}=\mathrm{1}\:{or}\:{x}=−\mathrm{1}\:{the}\:{serie}\:{diverges}. \\ $$$$\left.\mathrm{2}\right)\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{9}^{{n}} }=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}\:={S}\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$=\:\frac{\mathrm{3}}{\mathrm{2}}{ln}\mid\frac{\frac{\mathrm{4}}{\mathrm{3}}}{\frac{\mathrm{2}}{\mathrm{3}}}\mid=\frac{\mathrm{3}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com