Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 29986 by abdo imad last updated on 14/Feb/18

find Σ_(n=0) ^∞    ((n+1)/4^n ) .

$${find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{n}+\mathrm{1}}{\mathrm{4}^{{n}} }\:. \\ $$

Commented by abdo imad last updated on 14/Feb/18

let introduce for ∣x∣<1   S(x)= Σ_(n=0) ^∞   (n+1)x^n  we have  Σ_(n=0) ^∞  ((n+1)/4^n ) =S((1/4))  we have  ∫_0 ^x  S(t)dt =Σ_(n=0) ^∞ x^(n+1)   +λ  x=0 ⇒λ=0 and ∫_0 ^x  S(t)dt=Σ_(n=1) ^∞ x^n  =(1/(1−x)) −1 =(x/(1−x))  ⇒ S(x)=(d/dx)( (x/(1−x)))= ((1−x −x(−1))/((1 −x)^2 ))=  (1/((1−x)^2 )) ⇒  S((1/4))= (1/(((3/4))^2 )) = ((16)/9) ⇒ Σ_(n=0) ^∞   ((n+1)/4^n ) = ((16)/9) .

$${let}\:{introduce}\:{for}\:\mid{x}\mid<\mathrm{1}\:\:\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left({n}+\mathrm{1}\right){x}^{{n}} \:{we}\:{have} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{n}+\mathrm{1}}{\mathrm{4}^{{n}} }\:={S}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\:\:{we}\:{have}\:\:\int_{\mathrm{0}} ^{{x}} \:{S}\left({t}\right){dt}\:=\sum_{{n}=\mathrm{0}} ^{\infty} {x}^{{n}+\mathrm{1}} \:\:+\lambda \\ $$$${x}=\mathrm{0}\:\Rightarrow\lambda=\mathrm{0}\:{and}\:\int_{\mathrm{0}} ^{{x}} \:{S}\left({t}\right){dt}=\sum_{{n}=\mathrm{1}} ^{\infty} {x}^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}−{x}}\:−\mathrm{1}\:=\frac{{x}}{\mathrm{1}−{x}} \\ $$$$\Rightarrow\:{S}\left({x}\right)=\frac{{d}}{{dx}}\left(\:\frac{{x}}{\mathrm{1}−{x}}\right)=\:\frac{\mathrm{1}−{x}\:−{x}\left(−\mathrm{1}\right)}{\left(\mathrm{1}\:−{x}\right)^{\mathrm{2}} }=\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${S}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\:\frac{\mathrm{1}}{\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{16}}{\mathrm{9}}\:\Rightarrow\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{n}+\mathrm{1}}{\mathrm{4}^{{n}} }\:=\:\frac{\mathrm{16}}{\mathrm{9}}\:. \\ $$

Answered by MJS last updated on 14/Feb/18

Σ_(n=0) ^∞ ((n+1)/k^n )=(k^2 /((k−1)^2 )) with k>1

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}+\mathrm{1}}{{k}^{{n}} }=\frac{{k}^{\mathrm{2}} }{\left({k}−\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{with}\:{k}>\mathrm{1} \\ $$

Commented by abdo imad last updated on 14/Feb/18

you must show your work and your method sir mjs...

$${you}\:{must}\:{show}\:{your}\:{work}\:{and}\:{your}\:{method}\:{sir}\:{mjs}... \\ $$

Commented by abdo imad last updated on 15/Feb/18

we have proved that  Σ_(n=0) ^∞  (n+1)x^n  = (1/((1−x)^2 )) for ∣x∣<1  and for x= (1/k) with k>1 we obtain  Σ_(n=0) ^∞  ((n+1)/k^n ) = (1/((1−(1/k))^2 ))= (k^2 /((k−1)^2 ))  .

$${we}\:{have}\:{proved}\:{that}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({n}+\mathrm{1}\right){x}^{{n}} \:=\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$$${and}\:{for}\:{x}=\:\frac{\mathrm{1}}{{k}}\:{with}\:{k}>\mathrm{1}\:{we}\:{obtain} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{n}+\mathrm{1}}{{k}^{{n}} }\:=\:\frac{\mathrm{1}}{\left(\mathrm{1}−\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} }=\:\frac{{k}^{\mathrm{2}} }{\left({k}−\mathrm{1}\right)^{\mathrm{2}} }\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com