Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 209656 by Ismoiljon_008 last updated on 17/Jul/24

     2cos^2 x−3cosx+sinx+1=0     help

2cos2x3cosx+sinx+1=0help

Answered by Berbere last updated on 17/Jul/24

c=cos  s=sin  2c^2 −3c+s+1=0;c^2 +s^2 =1⇒  s^2 +c^2 =(−2c^2 +3c−1)^2 +c^2 =1  ⇔(4c^4 +9c^2 −12c^3 −6c+5c^2 )=0  c(4c^3 −12c^2 +14c−6)=0  ⇒c(2c^3 −6c^2 +7c−3)=0  c.(2c−2)(c^2 −2c+(3/2))=0⇒c∈{0,1}  c=0⇒ sin(x)=−1⇒x=−(π/2)+2kπ   c=1⇒sin(x)=0⇒x=2kπ  S={2kπ;−(π/2)+2kπ};k∈Z

c=coss=sin2c23c+s+1=0;c2+s2=1s2+c2=(2c2+3c1)2+c2=1(4c4+9c212c36c+5c2)=0c(4c312c2+14c6)=0c(2c36c2+7c3)=0c.(2c2)(c22c+32)=0c{0,1}c=0sin(x)=1x=π2+2kπc=1sin(x)=0x=2kπS={2kπ;π2+2kπ};kZ

Commented by Ismoiljon_008 last updated on 17/Jul/24

   thank you very much

thankyouverymuch

Answered by lepuissantcedricjunior last updated on 18/Jul/24

2cos^2 x−3cosx+sinx+1=0  2t^2 −3t+1+(√(1−t^2 ))=0  =>(−2t^2 +3t−1)=(√(1−t^2 ))  =>4t^4 −12t^3 +4t^2 −6t+1+9t^2 =1−t^2   =>4t^4 −12t^3 +14t^2 −6t=0  =>t(4t^3 −12t^2 +14t−6)=0  =>t=0ou 4t^3 −12t^2 +14t−6=0  =>t(t−1)(4t^2 −8t+6)=0  =>4t(t−1)(t^2 −2t+(3/2))=0  =>t=0ou t=1  => { ((cosx=0)),((cosx=1)) :}=> { ( { ((x=(𝛑/2)+2k𝛑)),((x=−(𝛑/2)+2k𝛑)) :}),((x=2k𝛑)) :}  S_R ={−(𝛑/2)+2k𝛑;(𝛑/2)+2k𝛑;+2k𝛑/k∈Z}

2cosx23cosx+sinx+1=02t23t+1+1t2=0=>(2t2+3t1)=1t2=>4t412t3+4t26t+1+9t2=1t2=>4t412t3+14t26t=0=>t(4t312t2+14t6)=0=>t=0ou4t312t2+14t6=0=>t(t1)(4t28t+6)=0=>4t(t1)(t22t+32)=0=>t=0out=1=>{cosx=0cosx=1=>{{x=π2+2kπx=π2+2kπx=2kπSR={π2+2kπ;π2+2kπ;+2kπ/kZ}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com