Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 3003 by Rasheed Soomro last updated on 02/Dec/15

What is nth term?  (1/2),(5/4),((15)/8),((37)/(16)),((83)/(32))...

$${What}\:{is}\:{nth}\:{term}? \\ $$$$\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{5}}{\mathrm{4}},\frac{\mathrm{15}}{\mathrm{8}},\frac{\mathrm{37}}{\mathrm{16}},\frac{\mathrm{83}}{\mathrm{32}}... \\ $$

Commented by Rasheed Soomro last updated on 05/Dec/15

HIGHly_(−)  Appriciate Your Guidance^(VALUEABLE) !

$$\underset{−} {\mathcal{HIGH}{ly}}\:\mathcal{A}{ppriciate}\:\mathcal{Y}{our}\:\overset{\mathcal{VALUEABLE}} {\mathcal{G}{uidance}}! \\ $$

Commented by prakash jain last updated on 04/Dec/15

a_1 =1 a_2 =5 a_3 =15 a_4 =37 a_5 =83  b_n =a_n −a_(n+1)   b_1 =−4  b_2 =−10 b_3 =−22 b_4 =−46  c_1 =6 c_2 =12 c_3 =24  c_n =b_n −b_(n+1)   d_1 =−6 d_2 =−12  d_n =c_n −c_(n+1)   d_n =−6n  c_(n+1) =c_n −d_n =c_n +6n (c_1 =6)  c_2 =6+6×1  c_3 =6+6×1+6×2  c_n =6+3(n−1)n  b_(n+1) =b_n −c_n =b_n −6−3(n−1)n, b_1 =−4  b_2 =−4−6−3(0)(1)=−10  b_3 =−4−6−3(0)(1)−6−3(1)(2)=−22  b_4 =−4−6−3(0)(1)−6−3(1)(2)−6−3(2)(3)=−46  b_n =−4−6(n−1)−3Σ_(i=1) ^(n−1) (i−1)(i)  a_(n+1) =a_n −b_n   a_2 =a_1 −b_1 =1+4+6(0)+3Σ_(i=1) ^0 (i−1)(i)=5  a_3 =1+4+6(0)+3Σ_(i=1) ^0 (i−1)(i)+4+6(1)+3Σ_(i=1) ^1 (i−1)(i)  =1+4+0+0+4+6+3(0)  a_n =1+4(n−1)+3(n−2)(n−1)+3Σ_(j=1) ^(n−2) Σ_(i=1) ^j (i−1)i  applying above formula  a_1 =1  a_2 =1+4+0+0=5  a_3 =1+4×2+3(1)(2)+3[Σ_(i=1) ^1 (i−1)i]  =1+8+6+3[0]=15  a_4 =1+4×3+3(2)(3)+3[Σ_(j=1) ^2 Σ_(i=1) ^j (i−1)i]  =1+12+18+3[Σ_(i=1) ^1 (i−1)i+Σ_(i=1) ^2 (i−1)i]  =1+12+18+6=37  a_5 =1+4×4+3×3×4+3[Σ_(i=1) ^1 (i−1)i+Σ_(i=1) ^2 (i−1)i+Σ_(i=1) ^3 (i−1)i]  =1+16+36+3[0+2+(0+2+6)]  =1+16+36+30=83  So the formula below satisfied a_1  to a_5   a_n =1+4(n−1)+3(n−2)(n−1)+3Σ_(j=1) ^(n−2) Σ_(i=1) ^j (i−1)i  a_6 =1+4×5+3(4)(5)+3[(0∙1)+(0∙1+1∙2)+(0∙1+1∙2+2∙3)+(0∙1+1∙2+2∙3+3∙4)]  =1+20+60+3[2+8+20]  =1+20+60+90=171  see answer for a formula

$${a}_{\mathrm{1}} =\mathrm{1}\:{a}_{\mathrm{2}} =\mathrm{5}\:{a}_{\mathrm{3}} =\mathrm{15}\:{a}_{\mathrm{4}} =\mathrm{37}\:{a}_{\mathrm{5}} =\mathrm{83} \\ $$$${b}_{{n}} ={a}_{{n}} −{a}_{{n}+\mathrm{1}} \\ $$$${b}_{\mathrm{1}} =−\mathrm{4}\:\:{b}_{\mathrm{2}} =−\mathrm{10}\:{b}_{\mathrm{3}} =−\mathrm{22}\:{b}_{\mathrm{4}} =−\mathrm{46} \\ $$$${c}_{\mathrm{1}} =\mathrm{6}\:{c}_{\mathrm{2}} =\mathrm{12}\:{c}_{\mathrm{3}} =\mathrm{24} \\ $$$${c}_{{n}} ={b}_{{n}} −{b}_{{n}+\mathrm{1}} \\ $$$${d}_{\mathrm{1}} =−\mathrm{6}\:{d}_{\mathrm{2}} =−\mathrm{12} \\ $$$${d}_{{n}} ={c}_{{n}} −{c}_{{n}+\mathrm{1}} \\ $$$${d}_{{n}} =−\mathrm{6}{n} \\ $$$${c}_{{n}+\mathrm{1}} ={c}_{{n}} −{d}_{{n}} ={c}_{{n}} +\mathrm{6}{n}\:\left({c}_{\mathrm{1}} =\mathrm{6}\right) \\ $$$${c}_{\mathrm{2}} =\mathrm{6}+\mathrm{6}×\mathrm{1} \\ $$$${c}_{\mathrm{3}} =\mathrm{6}+\mathrm{6}×\mathrm{1}+\mathrm{6}×\mathrm{2} \\ $$$${c}_{{n}} =\mathrm{6}+\mathrm{3}\left({n}−\mathrm{1}\right){n} \\ $$$${b}_{{n}+\mathrm{1}} ={b}_{{n}} −{c}_{{n}} ={b}_{{n}} −\mathrm{6}−\mathrm{3}\left({n}−\mathrm{1}\right){n},\:{b}_{\mathrm{1}} =−\mathrm{4} \\ $$$${b}_{\mathrm{2}} =−\mathrm{4}−\mathrm{6}−\mathrm{3}\left(\mathrm{0}\right)\left(\mathrm{1}\right)=−\mathrm{10} \\ $$$${b}_{\mathrm{3}} =−\mathrm{4}−\mathrm{6}−\mathrm{3}\left(\mathrm{0}\right)\left(\mathrm{1}\right)−\mathrm{6}−\mathrm{3}\left(\mathrm{1}\right)\left(\mathrm{2}\right)=−\mathrm{22} \\ $$$${b}_{\mathrm{4}} =−\mathrm{4}−\mathrm{6}−\mathrm{3}\left(\mathrm{0}\right)\left(\mathrm{1}\right)−\mathrm{6}−\mathrm{3}\left(\mathrm{1}\right)\left(\mathrm{2}\right)−\mathrm{6}−\mathrm{3}\left(\mathrm{2}\right)\left(\mathrm{3}\right)=−\mathrm{46} \\ $$$${b}_{{n}} =−\mathrm{4}−\mathrm{6}\left({n}−\mathrm{1}\right)−\mathrm{3}\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left({i}−\mathrm{1}\right)\left({i}\right) \\ $$$${a}_{{n}+\mathrm{1}} ={a}_{{n}} −{b}_{{n}} \\ $$$${a}_{\mathrm{2}} ={a}_{\mathrm{1}} −{b}_{\mathrm{1}} =\mathrm{1}+\mathrm{4}+\mathrm{6}\left(\mathrm{0}\right)+\mathrm{3}\underset{{i}=\mathrm{1}} {\overset{\mathrm{0}} {\sum}}\left({i}−\mathrm{1}\right)\left({i}\right)=\mathrm{5} \\ $$$${a}_{\mathrm{3}} =\mathrm{1}+\mathrm{4}+\mathrm{6}\left(\mathrm{0}\right)+\mathrm{3}\underset{{i}=\mathrm{1}} {\overset{\mathrm{0}} {\sum}}\left({i}−\mathrm{1}\right)\left({i}\right)+\mathrm{4}+\mathrm{6}\left(\mathrm{1}\right)+\mathrm{3}\underset{{i}=\mathrm{1}} {\overset{\mathrm{1}} {\sum}}\left({i}−\mathrm{1}\right)\left({i}\right) \\ $$$$=\mathrm{1}+\mathrm{4}+\mathrm{0}+\mathrm{0}+\mathrm{4}+\mathrm{6}+\mathrm{3}\left(\mathrm{0}\right) \\ $$$${a}_{{n}} =\mathrm{1}+\mathrm{4}\left({n}−\mathrm{1}\right)+\mathrm{3}\left({n}−\mathrm{2}\right)\left({n}−\mathrm{1}\right)+\mathrm{3}\underset{{j}=\mathrm{1}} {\overset{{n}−\mathrm{2}} {\sum}}\underset{{i}=\mathrm{1}} {\overset{{j}} {\sum}}\left({i}−\mathrm{1}\right){i} \\ $$$${applying}\:{above}\:{formula} \\ $$$${a}_{\mathrm{1}} =\mathrm{1} \\ $$$${a}_{\mathrm{2}} =\mathrm{1}+\mathrm{4}+\mathrm{0}+\mathrm{0}=\mathrm{5} \\ $$$${a}_{\mathrm{3}} =\mathrm{1}+\mathrm{4}×\mathrm{2}+\mathrm{3}\left(\mathrm{1}\right)\left(\mathrm{2}\right)+\mathrm{3}\left[\underset{{i}=\mathrm{1}} {\overset{\mathrm{1}} {\sum}}\left({i}−\mathrm{1}\right){i}\right] \\ $$$$=\mathrm{1}+\mathrm{8}+\mathrm{6}+\mathrm{3}\left[\mathrm{0}\right]=\mathrm{15} \\ $$$${a}_{\mathrm{4}} =\mathrm{1}+\mathrm{4}×\mathrm{3}+\mathrm{3}\left(\mathrm{2}\right)\left(\mathrm{3}\right)+\mathrm{3}\left[\underset{{j}=\mathrm{1}} {\overset{\mathrm{2}} {\sum}}\underset{{i}=\mathrm{1}} {\overset{{j}} {\sum}}\left({i}−\mathrm{1}\right){i}\right] \\ $$$$=\mathrm{1}+\mathrm{12}+\mathrm{18}+\mathrm{3}\left[\underset{{i}=\mathrm{1}} {\overset{\mathrm{1}} {\sum}}\left({i}−\mathrm{1}\right){i}+\underset{{i}=\mathrm{1}} {\overset{\mathrm{2}} {\sum}}\left({i}−\mathrm{1}\right){i}\right] \\ $$$$=\mathrm{1}+\mathrm{12}+\mathrm{18}+\mathrm{6}=\mathrm{37} \\ $$$${a}_{\mathrm{5}} =\mathrm{1}+\mathrm{4}×\mathrm{4}+\mathrm{3}×\mathrm{3}×\mathrm{4}+\mathrm{3}\left[\underset{{i}=\mathrm{1}} {\overset{\mathrm{1}} {\sum}}\left({i}−\mathrm{1}\right){i}+\underset{{i}=\mathrm{1}} {\overset{\mathrm{2}} {\sum}}\left({i}−\mathrm{1}\right){i}+\underset{{i}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\left({i}−\mathrm{1}\right){i}\right] \\ $$$$=\mathrm{1}+\mathrm{16}+\mathrm{36}+\mathrm{3}\left[\mathrm{0}+\mathrm{2}+\left(\mathrm{0}+\mathrm{2}+\mathrm{6}\right)\right] \\ $$$$=\mathrm{1}+\mathrm{16}+\mathrm{36}+\mathrm{30}=\mathrm{83} \\ $$$${S}\mathrm{o}\:\mathrm{the}\:\mathrm{formula}\:\mathrm{below}\:\mathrm{satisfied}\:{a}_{\mathrm{1}} \:\mathrm{to}\:{a}_{\mathrm{5}} \\ $$$${a}_{{n}} =\mathrm{1}+\mathrm{4}\left({n}−\mathrm{1}\right)+\mathrm{3}\left({n}−\mathrm{2}\right)\left({n}−\mathrm{1}\right)+\mathrm{3}\underset{{j}=\mathrm{1}} {\overset{{n}−\mathrm{2}} {\sum}}\underset{{i}=\mathrm{1}} {\overset{{j}} {\sum}}\left({i}−\mathrm{1}\right){i} \\ $$$${a}_{\mathrm{6}} =\mathrm{1}+\mathrm{4}×\mathrm{5}+\mathrm{3}\left(\mathrm{4}\right)\left(\mathrm{5}\right)+\mathrm{3}\left[\left(\mathrm{0}\centerdot\mathrm{1}\right)+\left(\mathrm{0}\centerdot\mathrm{1}+\mathrm{1}\centerdot\mathrm{2}\right)+\left(\mathrm{0}\centerdot\mathrm{1}+\mathrm{1}\centerdot\mathrm{2}+\mathrm{2}\centerdot\mathrm{3}\right)+\left(\mathrm{0}\centerdot\mathrm{1}+\mathrm{1}\centerdot\mathrm{2}+\mathrm{2}\centerdot\mathrm{3}+\mathrm{3}\centerdot\mathrm{4}\right)\right] \\ $$$$=\mathrm{1}+\mathrm{20}+\mathrm{60}+\mathrm{3}\left[\mathrm{2}+\mathrm{8}+\mathrm{20}\right] \\ $$$$=\mathrm{1}+\mathrm{20}+\mathrm{60}+\mathrm{90}=\mathrm{171} \\ $$$${see}\:{answer}\:{for}\:{a}\:{formula} \\ $$

Answered by Yozzi last updated on 02/Dec/15

6×(1−1)−(−1)=1  6(2−1)−1=5  6×(4−1)−3=15  6×(8−1)−5=37  6×(16−1)−7=83  a_n =6(2^(n−1) −1)−2n+3  ⇒a_1 =6(1−1)−2+3=1  a_2 =6(2−1)−4+3=6−1=5  a_3 =6(3)−6+3=15  a_4 =42−8+3=42−5=37  a_5 =6×15−10+3=83  The general term of the sequence {b_n }  is then  b_n =((6(2^(n−1) −1)−2n+3)/2^n ) n≥1

$$\mathrm{6}×\left(\mathrm{1}−\mathrm{1}\right)−\left(−\mathrm{1}\right)=\mathrm{1} \\ $$$$\mathrm{6}\left(\mathrm{2}−\mathrm{1}\right)−\mathrm{1}=\mathrm{5} \\ $$$$\mathrm{6}×\left(\mathrm{4}−\mathrm{1}\right)−\mathrm{3}=\mathrm{15} \\ $$$$\mathrm{6}×\left(\mathrm{8}−\mathrm{1}\right)−\mathrm{5}=\mathrm{37} \\ $$$$\mathrm{6}×\left(\mathrm{16}−\mathrm{1}\right)−\mathrm{7}=\mathrm{83} \\ $$$${a}_{{n}} =\mathrm{6}\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\right)−\mathrm{2}{n}+\mathrm{3} \\ $$$$\Rightarrow{a}_{\mathrm{1}} =\mathrm{6}\left(\mathrm{1}−\mathrm{1}\right)−\mathrm{2}+\mathrm{3}=\mathrm{1} \\ $$$${a}_{\mathrm{2}} =\mathrm{6}\left(\mathrm{2}−\mathrm{1}\right)−\mathrm{4}+\mathrm{3}=\mathrm{6}−\mathrm{1}=\mathrm{5} \\ $$$${a}_{\mathrm{3}} =\mathrm{6}\left(\mathrm{3}\right)−\mathrm{6}+\mathrm{3}=\mathrm{15} \\ $$$${a}_{\mathrm{4}} =\mathrm{42}−\mathrm{8}+\mathrm{3}=\mathrm{42}−\mathrm{5}=\mathrm{37} \\ $$$${a}_{\mathrm{5}} =\mathrm{6}×\mathrm{15}−\mathrm{10}+\mathrm{3}=\mathrm{83} \\ $$$${The}\:{general}\:{term}\:{of}\:{the}\:{sequence}\:\left\{{b}_{{n}} \right\} \\ $$$${is}\:{then} \\ $$$${b}_{{n}} =\frac{\mathrm{6}\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\right)−\mathrm{2}{n}+\mathrm{3}}{\mathrm{2}^{{n}} }\:{n}\geqslant\mathrm{1} \\ $$$$ \\ $$

Commented by Yozzi last updated on 02/Dec/15

b_n =3−(6/2^n )−(n/2^(n−1) )+(3/2^n )  lim_(n→∞) b_n =3−0−0+0=3

$${b}_{{n}} =\mathrm{3}−\frac{\mathrm{6}}{\mathrm{2}^{{n}} }−\frac{{n}}{\mathrm{2}^{{n}−\mathrm{1}} }+\frac{\mathrm{3}}{\mathrm{2}^{{n}} } \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{b}_{{n}} =\mathrm{3}−\mathrm{0}−\mathrm{0}+\mathrm{0}=\mathrm{3} \\ $$

Commented by Yozzi last updated on 02/Dec/15

Nice work Mr. Ahmad! It took a  while for me to make such observations.  It would be suitable if the formula  I proposed is proved by induction  on n.

$${Nice}\:{work}\:{Mr}.\:{Ahmad}!\:{It}\:{took}\:{a} \\ $$$${while}\:{for}\:{me}\:{to}\:{make}\:{such}\:{observations}. \\ $$$${It}\:{would}\:{be}\:{suitable}\:{if}\:{the}\:{formula} \\ $$$${I}\:{proposed}\:{is}\:{proved}\:{by}\:{induction} \\ $$$${on}\:{n}. \\ $$$$ \\ $$

Commented by RasheedAhmad last updated on 02/Dec/15

SUPER! Don′t have words!!  Within unexpected short time!    This question is actually very  closely related to Q2941.  The terms are actually sums of  1, 2, 3,...terms of the series of  Q2941. Your answer is sum of  n terms. I think the Q2941 can  also be solved now in a different   way.

$$\mathcal{SUPER}!\:\mathcal{D}{on}'{t}\:{have}\:{words}!! \\ $$$${Within}\:{unexpected}\:{short}\:{time}! \\ $$$$ \\ $$$${This}\:{question}\:{is}\:{actually}\:{very} \\ $$$${closely}\:{related}\:{to}\:{Q}\mathrm{2941}. \\ $$$${The}\:{terms}\:{are}\:{actually}\:{sums}\:{of} \\ $$$$\mathrm{1},\:\mathrm{2},\:\mathrm{3},...{terms}\:{of}\:{the}\:{series}\:{of} \\ $$$${Q}\mathrm{2941}.\:{Your}\:{answer}\:{is}\:{sum}\:{of} \\ $$$${n}\:{terms}.\:{I}\:{think}\:{the}\:{Q}\mathrm{2941}\:{can} \\ $$$${also}\:{be}\:{solved}\:{now}\:{in}\:{a}\:{different}\: \\ $$$${way}. \\ $$

Commented by 123456 last updated on 02/Dec/15

s_n =Σ_(i=1) ^n a_i   a_(n+1) =s_(n+1) −s_n

$${s}_{{n}} =\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{i}} \\ $$$${a}_{{n}+\mathrm{1}} ={s}_{{n}+\mathrm{1}} −{s}_{{n}} \\ $$

Commented by Rasheed Soomro last updated on 03/Dec/15

b_n =((6(2^(n−1) −1)−2n+3)/2^n )  b_n =((6.2^(n−1) −6−2n+3)/2^n )  b_n =((6.2^(n−1) −2n−3)/2^n )  =((3.2^(n−1) )/2^(n−1) )−(n/2^(n−1) )−(3/2^n )  =3−(n/2^(n−1) )−(3/2^n )

$${b}_{{n}} =\frac{\mathrm{6}\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\right)−\mathrm{2}{n}+\mathrm{3}}{\mathrm{2}^{{n}} } \\ $$$${b}_{{n}} =\frac{\mathrm{6}.\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{6}−\mathrm{2}{n}+\mathrm{3}}{\mathrm{2}^{{n}} } \\ $$$${b}_{{n}} =\frac{\mathrm{6}.\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{2}{n}−\mathrm{3}}{\mathrm{2}^{{n}} } \\ $$$$=\frac{\mathrm{3}.\mathrm{2}^{{n}−\mathrm{1}} }{\mathrm{2}^{{n}−\mathrm{1}} }−\frac{{n}}{\mathrm{2}^{{n}−\mathrm{1}} }−\frac{\mathrm{3}}{\mathrm{2}^{{n}} } \\ $$$$=\mathrm{3}−\frac{{n}}{\mathrm{2}^{{n}−\mathrm{1}} }−\frac{\mathrm{3}}{\mathrm{2}^{{n}} } \\ $$

Commented by Rasheed Soomro last updated on 03/Dec/15

Thanks! My answer was not matching with  your answer.For testing I calculated wrongly   2nd term which also didn′t match...but now  it′s all right.        But then your answer in earlier comment  needs to simplify a bit more.

$${Thanks}!\:{My}\:{answer}\:{was}\:{not}\:{matching}\:{with} \\ $$$${your}\:{answer}.{For}\:{testing}\:{I}\:{calculated}\:{wrongly}\: \\ $$$$\mathrm{2}{nd}\:{term}\:{which}\:{also}\:{didn}'{t}\:{match}...{but}\:{now} \\ $$$${it}'{s}\:{all}\:{right}. \\ $$$$\:\:\:\:\:\:{But}\:{then}\:{your}\:{answer}\:{in}\:{earlier}\:{comment} \\ $$$${needs}\:{to}\:{simplify}\:{a}\:{bit}\:{more}. \\ $$

Commented by Yozzi last updated on 03/Dec/15

Nothing is wrong...

$${Nothing}\:{is}\:{wrong}... \\ $$

Commented by prakash jain last updated on 04/Dec/15

a_6 =6(2^5 −1)−2×6+3=186−12+3=177  see another answer below for a different formula.

$${a}_{\mathrm{6}} =\mathrm{6}\left(\mathrm{2}^{\mathrm{5}} −\mathrm{1}\right)−\mathrm{2}×\mathrm{6}+\mathrm{3}=\mathrm{186}−\mathrm{12}+\mathrm{3}=\mathrm{177} \\ $$$${see}\:{another}\:{answer}\:{below}\:{for}\:{a}\:{different}\:{formula}. \\ $$

Answered by prakash jain last updated on 04/Dec/15

nth term=(N_n /D_n )  D_n =2^n   N_n =1+4(n−1)+(5/2)(n−1)(n−2)+(((n−2)^2 (n−1)^2 )/4)  N_1 =1+0+0+0+0=1  N_2 =1+4+0+0=5  N_3 =1+8+(5/2)×2+((1^2 ∙2^2 )/4)=15  N_4 =1+12+(5/2)(3)(2)+((2^2 ∙3^2 )/4)=13+15+9=37  N_5 =1+16+(5/2)×(4)(3)+((3^2 4^2 )/4)=1+16+30+36=83  N_6 =1+20+(5/2)×(5)(4)+((4^2 5^2 )/4)=1+20+50+100=171

$${nth}\:{term}=\frac{{N}_{{n}} }{{D}_{{n}} } \\ $$$${D}_{{n}} =\mathrm{2}^{{n}} \\ $$$${N}_{{n}} =\mathrm{1}+\mathrm{4}\left({n}−\mathrm{1}\right)+\frac{\mathrm{5}}{\mathrm{2}}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)+\frac{\left({n}−\mathrm{2}\right)^{\mathrm{2}} \left({n}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$${N}_{\mathrm{1}} =\mathrm{1}+\mathrm{0}+\mathrm{0}+\mathrm{0}+\mathrm{0}=\mathrm{1} \\ $$$${N}_{\mathrm{2}} =\mathrm{1}+\mathrm{4}+\mathrm{0}+\mathrm{0}=\mathrm{5} \\ $$$${N}_{\mathrm{3}} =\mathrm{1}+\mathrm{8}+\frac{\mathrm{5}}{\mathrm{2}}×\mathrm{2}+\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{15} \\ $$$${N}_{\mathrm{4}} =\mathrm{1}+\mathrm{12}+\frac{\mathrm{5}}{\mathrm{2}}\left(\mathrm{3}\right)\left(\mathrm{2}\right)+\frac{\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{13}+\mathrm{15}+\mathrm{9}=\mathrm{37} \\ $$$${N}_{\mathrm{5}} =\mathrm{1}+\mathrm{16}+\frac{\mathrm{5}}{\mathrm{2}}×\left(\mathrm{4}\right)\left(\mathrm{3}\right)+\frac{\mathrm{3}^{\mathrm{2}} \mathrm{4}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{1}+\mathrm{16}+\mathrm{30}+\mathrm{36}=\mathrm{83} \\ $$$${N}_{\mathrm{6}} =\mathrm{1}+\mathrm{20}+\frac{\mathrm{5}}{\mathrm{2}}×\left(\mathrm{5}\right)\left(\mathrm{4}\right)+\frac{\mathrm{4}^{\mathrm{2}} \mathrm{5}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{1}+\mathrm{20}+\mathrm{50}+\mathrm{100}=\mathrm{171} \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 05/Dec/15

Not only you have Knowledge  but also a Nice way to  convey it!

$$\mathcal{N}{ot}\:{only}\:{you}\:{have}\:\boldsymbol{\mathcal{K}{nowledge}}\:\:{but}\:{also}\:{a}\:\boldsymbol{\mathcal{N}{ice}}\:{way}\:{to} \\ $$$${convey}\:{it}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com