Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 30079 by naka3546 last updated on 16/Feb/18

Commented by naka3546 last updated on 16/Feb/18

Luas  is  Area  in  Indonesia .

$${Luas}\:\:{is}\:\:{Area}\:\:{in}\:\:{Indonesia}\:. \\ $$

Answered by $@ty@m last updated on 16/Feb/18

Let us draw PN⊥AD  ar(APD)=(1/2)×AD×PN −−(1)  ar(FCD)=(1/2)×FC×2PN   ar(FCD)=(1/2)×((1/2)×AD)×2PN   =(1/2)×AD×PN −−−(2)  ⇒ar(APD)=ar(FCD)   ⇒ar(APD)−ar(EPD)=ar(FCD)−ar(EPD)  ⇒ar(FCPE)=ar(ADE)

$${Let}\:{us}\:{draw}\:{PN}\bot{AD} \\ $$$${ar}\left({APD}\right)=\frac{\mathrm{1}}{\mathrm{2}}×{AD}×{PN}\:−−\left(\mathrm{1}\right) \\ $$$${ar}\left({FCD}\right)=\frac{\mathrm{1}}{\mathrm{2}}×{FC}×\mathrm{2}{PN}\: \\ $$$${ar}\left({FCD}\right)=\frac{\mathrm{1}}{\mathrm{2}}×\left(\frac{\mathrm{1}}{\mathrm{2}}×{AD}\right)×\mathrm{2}{PN}\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×{AD}×{PN}\:−−−\left(\mathrm{2}\right) \\ $$$$\Rightarrow{ar}\left({APD}\right)={ar}\left({FCD}\right)\: \\ $$$$\Rightarrow{ar}\left({APD}\right)−{ar}\left({EPD}\right)={ar}\left({FCD}\right)−{ar}\left({EPD}\right) \\ $$$$\Rightarrow{ar}\left({FCPE}\right)={ar}\left({ADE}\right) \\ $$

Answered by ajfour last updated on 16/Feb/18

(1/(11)) .

$$\frac{\mathrm{1}}{\mathrm{11}}\:. \\ $$

Commented by naka3546 last updated on 16/Feb/18

how to get   (1/(11))  ?

$${how}\:{to}\:{get}\:\:\:\frac{\mathrm{1}}{\mathrm{11}}\:\:? \\ $$

Answered by ajfour last updated on 16/Feb/18

Commented by ajfour last updated on 16/Feb/18

let entire area(of //gm) = 4A^�   4A^�  = a^� ×b^�   since ar(EDA)=ar(FCPE)  ar(EDA)+ar(EPD)=                          ar(FCPA)+ar(EPD)  ⇒ ar(DAP)= ar(DFC)        (1/2)(a^� ×(b^� /2))= (1/2)(λa^� ×b^� )  ⇒   ((a^� ×b^� )/4) = A^�  =(1/2)( λa^� ×b^� )  ⇒  𝛌 =(1/2) .....(i)   as   DE^(−)  =DP^(−) +PE^(−)   ⇒   ρ(b^� +λa^� )=(b^� /2)+μ(a^� −(b^� /2))  ⇒   ρ(b^� +(a^� /2))=(b^� /2)+μ(a^� −(b^� /2))  so comparing coefficients of  a^�  and b^�   we get        𝛒=(1/2)−(𝛍/2)    and   (𝛒/2)=𝛍  ⇒    2ρ =1−μ   and  ρ=2μ  ⇒     4μ = 1−μ         or   𝛍=(1/5)     ;  𝛒=(2/5) .....(ii)    ((ar(DPE))/(ar(ABFE))) = ((μ×ar(DAP))/(ar(ABCD)−2×ar(DAP)+ar(DEP)))     =((μA^� )/(4A^� −2A^� +μA^� ))    and with μ=(1/5)  ((ar(DPE))/(ar(ABFE)))=((1/5)/(2+(1/5))) = (1/(11))  .

$${let}\:{entire}\:{area}\left({of}\://{gm}\right)\:=\:\mathrm{4}\bar {{A}} \\ $$$$\mathrm{4}\bar {{A}}\:=\:\bar {{a}}×\bar {{b}} \\ $$$${since}\:{ar}\left({EDA}\right)={ar}\left({FCPE}\right) \\ $$$${ar}\left({EDA}\right)+{ar}\left({EPD}\right)= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ar}\left({FCPA}\right)+{ar}\left({EPD}\right) \\ $$$$\Rightarrow\:{ar}\left({DAP}\right)=\:{ar}\left({DFC}\right) \\ $$$$\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\left(\bar {{a}}×\frac{\bar {{b}}}{\mathrm{2}}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\lambda\bar {{a}}×\bar {{b}}\right) \\ $$$$\Rightarrow\:\:\:\frac{\bar {{a}}×\bar {{b}}}{\mathrm{4}}\:=\:\bar {{A}}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\:\lambda\bar {{a}}×\bar {{b}}\right) \\ $$$$\Rightarrow\:\:\boldsymbol{\lambda}\:=\frac{\mathrm{1}}{\mathrm{2}}\:.....\left({i}\right) \\ $$$$\:{as}\:\:\:\overline {{DE}}\:=\overline {{DP}}+\overline {{PE}} \\ $$$$\Rightarrow\:\:\:\rho\left(\bar {{b}}+\lambda\bar {{a}}\right)=\frac{\bar {{b}}}{\mathrm{2}}+\mu\left(\bar {{a}}−\frac{\bar {{b}}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\:\:\rho\left(\bar {{b}}+\frac{\bar {{a}}}{\mathrm{2}}\right)=\frac{\bar {{b}}}{\mathrm{2}}+\mu\left(\bar {{a}}−\frac{\bar {{b}}}{\mathrm{2}}\right) \\ $$$${so}\:{comparing}\:{coefficients}\:{of} \\ $$$$\bar {{a}}\:{and}\:\bar {{b}}\:\:{we}\:{get} \\ $$$$\:\:\:\:\:\:\boldsymbol{\rho}=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\boldsymbol{\mu}}{\mathrm{2}}\:\:\:\:{and}\:\:\:\frac{\boldsymbol{\rho}}{\mathrm{2}}=\boldsymbol{\mu} \\ $$$$\Rightarrow\:\:\:\:\mathrm{2}\rho\:=\mathrm{1}−\mu\:\:\:{and}\:\:\rho=\mathrm{2}\mu \\ $$$$\Rightarrow\:\:\:\:\:\mathrm{4}\mu\:=\:\mathrm{1}−\mu\:\:\: \\ $$$$\:\:\:\:{or}\:\:\:\boldsymbol{\mu}=\frac{\mathrm{1}}{\mathrm{5}}\:\:\:\:\:;\:\:\boldsymbol{\rho}=\frac{\mathrm{2}}{\mathrm{5}}\:.....\left({ii}\right) \\ $$$$\:\:\frac{{ar}\left({DPE}\right)}{{ar}\left({ABFE}\right)}\:=\:\frac{\mu×{ar}\left({DAP}\right)}{{ar}\left({ABCD}\right)−\mathrm{2}×{ar}\left({DAP}\right)+{ar}\left({DEP}\right)} \\ $$$$\:\:\:=\frac{\mu\bar {{A}}}{\mathrm{4}\bar {{A}}−\mathrm{2}\bar {{A}}+\mu\bar {{A}}}\:\:\:\:{and}\:{with}\:\mu=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\frac{{ar}\left({DPE}\right)}{{ar}\left({ABFE}\right)}=\frac{\mathrm{1}/\mathrm{5}}{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{5}}}\:=\:\frac{\mathrm{1}}{\mathrm{11}}\:\:. \\ $$

Answered by mrW2 last updated on 16/Feb/18

Commented by mrW2 last updated on 17/Feb/18

let S=Area of ABCD  ΔADP=(S/4)=S_1 +S_3   ΔCDF=S_1 +S_3 =(S/4)  ⇒FC=((BC)/2)  CG=AD=BC  ((FG)/(CG))=(3/2)  ((Area of ΔEFG)/(Area of ΔHCG))=(((FG)/(CG)))^2   ⇒((S_3 +S_1 +S_3 )/S_3 )=((3/2))^2 =(9/4)  8S_3 +4S_1 =9S_3   ⇒S_3 =4S_1   S_3 +S_1 =5S_1 =(S/4)  ⇒S_1 =(S/(20))  ⇒S_3 =4S_1 =(1/5)S  S_2 +S_3 =(3/4)S  ⇒S_2 =(3/4)S−S_3 =(3/4)S−(1/5)S=((11)/(20))S=11S_1   ⇒(S_1 /S_2 )=(1/(11))

$${let}\:{S}={Area}\:{of}\:{ABCD} \\ $$$$\Delta{ADP}=\frac{{S}}{\mathrm{4}}={S}_{\mathrm{1}} +{S}_{\mathrm{3}} \\ $$$$\Delta{CDF}={S}_{\mathrm{1}} +{S}_{\mathrm{3}} =\frac{{S}}{\mathrm{4}} \\ $$$$\Rightarrow{FC}=\frac{{BC}}{\mathrm{2}} \\ $$$${CG}={AD}={BC} \\ $$$$\frac{{FG}}{{CG}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\frac{{Area}\:{of}\:\Delta{EFG}}{{Area}\:{of}\:\Delta{HCG}}=\left(\frac{{FG}}{{CG}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{S}_{\mathrm{3}} +{S}_{\mathrm{1}} +{S}_{\mathrm{3}} }{{S}_{\mathrm{3}} }=\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\mathrm{8}{S}_{\mathrm{3}} +\mathrm{4}{S}_{\mathrm{1}} =\mathrm{9}{S}_{\mathrm{3}} \\ $$$$\Rightarrow{S}_{\mathrm{3}} =\mathrm{4}{S}_{\mathrm{1}} \\ $$$${S}_{\mathrm{3}} +{S}_{\mathrm{1}} =\mathrm{5}{S}_{\mathrm{1}} =\frac{{S}}{\mathrm{4}} \\ $$$$\Rightarrow{S}_{\mathrm{1}} =\frac{{S}}{\mathrm{20}} \\ $$$$\Rightarrow{S}_{\mathrm{3}} =\mathrm{4}{S}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{5}}{S} \\ $$$${S}_{\mathrm{2}} +{S}_{\mathrm{3}} =\frac{\mathrm{3}}{\mathrm{4}}{S} \\ $$$$\Rightarrow{S}_{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{4}}{S}−{S}_{\mathrm{3}} =\frac{\mathrm{3}}{\mathrm{4}}{S}−\frac{\mathrm{1}}{\mathrm{5}}{S}=\frac{\mathrm{11}}{\mathrm{20}}{S}=\mathrm{11}{S}_{\mathrm{1}} \\ $$$$\Rightarrow\frac{{S}_{\mathrm{1}} }{{S}_{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{11}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com