Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 30120 by ajfour last updated on 16/Feb/18

Commented by ajfour last updated on 16/Feb/18

Determine 𝛒, 𝛈, 𝛔, 𝛆   in terms  of 𝛌 and 𝛍 .

Determineρ,η,σ,ϵintermsofλandμ.

Answered by mrW2 last updated on 17/Feb/18

Commented by ajfour last updated on 17/Feb/18

Thank you Sir. I have solved  the vector way.

ThankyouSir.Ihavesolvedthevectorway.

Commented by mrW2 last updated on 17/Feb/18

maybe one can use vector method to  get the result more easily.

maybeonecanusevectormethodtogettheresultmoreeasily.

Commented by mrW2 last updated on 17/Feb/18

let AB=c, BC=a, ∠ABC=θ  B(0,0)  D(λa,0)  C(a,0)  F(μc cos θ,μc sin θ)  A(c cos θ,c sin θ)    Eqn. of CF:  ((y−0)/(x−a))=((μc sin θ−0)/(μc cos θ−a))  y(μc cos θ−a)=(x−a)μc sin θ  Eqn. of AD  ((y−0)/(x−λa))=((c sin θ−0)/(c cos θ−λa))  y(c cos θ−λa)=(x−λa)c sin θ  Point G:  y_G (μc cos θ−a)=(x_G −a)μc sin θ  y_G (c cos θ−λa)=(x_G −λa)c sin θ  ⇒((μc cos θ−a)/(c cos θ−λa))=(((x_G −a)μ)/(x_G −λa))  ⇒(μc cos θ −a)x_G −λμac cos θ+λa^2 =(μc cos θ−λμa)x_G −μac cos θ+λμa^2   ⇒(1−λμ)x_G =(1−λ)μc cos θ+λ(1−μ)a  ⇒x_G =(((1−λ)μc cos θ+λ(1−μ)a)/(1−λμ))  ⇒y_G =((c sin θ(x_G −λa))/(c cos θ−λa))  ⇒y_G =((c sin θ)/(c cos θ−λa))×[(((1−λ)μc cos θ+λ(1−μ)a−λa(1−λμ))/(1−λμ))]  ⇒y_G =(((1−λ)μc sin θ)/(1−λμ))    Eqn. of BE:  (y/x)=((((1−λ)μc sin θ)/(1−λμ))/(((1−λ)μc cos θ+λ(1−μ)a)/(1−λμ)))=(((1−λ)μc sin θ)/((1−λ)μc cos θ+λ(1−μ)a))  y[(1−λ)μc cos θ+λ(1−μ)a]=x(1−λ)μc sin θ  Eqn. of AC:  ((y−0)/(x−a))=((c sin θ−0)/(c cos θ−a))  y(c cos θ−a)=(x−a)c sin θ  Point E:  y_E [(1−λ)μc cos θ+λ(1−μ)a]=x_E (1−λ)μc sin θ  y_E (c cos θ−a)=(x_E −a)c sin θ  ⇒(((1−λ)μc cos θ+λ(1−μ)a)/(c cos θ−a))=((x_E (1−λ)μ)/(x_E −a))  [(1−λ)μc cos θ+λ(1−μ)a]x_E −a[(1−λ)μc cos θ+λ(1−μ)a]=(1−λ)μ(c cos θ−a)x_E   [(1−λ)μa+λ(1−μ)a]x_E =a[(1−λ)μc cos θ+λ(1−μ)a]  [λ+μ(1−2λ)]x_E =(1−λ)μc cos θ+λ(1−μ)a  ⇒x_E =(((1−λ)μc cos θ+λ(1−μ)a)/(λ+μ(1−2λ)))  ⇒y_E =((c sin θ(x_E −a))/(c cos θ−a))=((c sin θ)/(c cos θ−a))×[(((1−λ)μc cos θ+λ(1−μ)a−aλ−aμ(1−2λ))/(λ+μ(1−2λ)))]  ⇒y_E =((c sin θ)/(c cos θ−a))×[(((1−λ)μ(c cos θ−a))/(λ+μ(1−2λ)))]  ⇒y_E =(((1−λ)μc sin θ)/(λ+μ(1−2λ)))    η=(x_G /x_E )=(((1−λ)μc cos θ+λ(1−μ)a)/(1−λμ))×((λ+μ(1−2λ))/((1−λ)μc cos θ+λ(1−μ)a))  ⇒η=((λ+μ(1−2λ))/(1−λμ))=((λ+μ−2λμ)/(1−λμ))   ...(I)  ε=(y_E /y_A )=(((1−λ)μc sin θ)/(λ+μ(1−2λ)))×(1/(c sin θ))  ⇒ε=(((1−λ)μ)/(λ+μ(1−2λ)))=((μ−λμ)/(λ+μ−2λμ))    ...(II)    using these two relations all other  values can be determined.  σ=((ε+(1−λ)(1−2ε))/(1−ε(1−λ)))  σ=(((((1−λ)μ)/(λ+μ(1−2λ)))+(1−λ)(1−((2(1−λ)μ)/(λ+μ(1−2λ)))))/(1−(((1−λ)μ)/(λ+μ(1−2λ)))(1−λ)))  σ=(((1−λ)μ+(1−λ)[λ+μ(1−2λ)−2(1−λ)μ])/(λ+μ(1−2λ)−(1−λ)^2 μ))  ⇒σ=((1−λ)/(1−λμ))    ρ=(((1−μ)+(1−ε)[1−2(1−μ)])/(1−(1−μ)(1−ε)))  ρ=(((1−μ)+[1−(((1−λ)μ)/(λ+μ(1−2λ)))][1−2(1−μ)])/(1−(1−μ)[1−(((1−λ)μ)/(λ+μ(1−2λ)))]))  ρ=(((1−μ)[λ+μ(1−2λ)]+[λ+μ(1−2λ)−(1−λ)μ][1−2(1−μ)])/(λ+μ(1−2λ)−(1−μ)[λ+μ(1−2λ)−(1−λ)μ]))  ⇒ρ=((1−μ)/(1−λμ))

letAB=c,BC=a,ABC=θB(0,0)D(λa,0)C(a,0)F(μccosθ,μcsinθ)A(ccosθ,csinθ)Eqn.ofCF:y0xa=μcsinθ0μccosθay(μccosθa)=(xa)μcsinθEqn.ofADy0xλa=csinθ0ccosθλay(ccosθλa)=(xλa)csinθPointG:yG(μccosθa)=(xGa)μcsinθyG(ccosθλa)=(xGλa)csinθμccosθaccosθλa=(xGa)μxGλa(μccosθa)xGλμaccosθ+λa2=(μccosθλμa)xGμaccosθ+λμa2(1λμ)xG=(1λ)μccosθ+λ(1μ)axG=(1λ)μccosθ+λ(1μ)a1λμyG=csinθ(xGλa)ccosθλayG=csinθccosθλa×[(1λ)μccosθ+λ(1μ)aλa(1λμ)1λμ]yG=(1λ)μcsinθ1λμEqn.ofBE:yx=(1λ)μcsinθ1λμ(1λ)μccosθ+λ(1μ)a1λμ=(1λ)μcsinθ(1λ)μccosθ+λ(1μ)ay[(1λ)μccosθ+λ(1μ)a]=x(1λ)μcsinθEqn.ofAC:y0xa=csinθ0ccosθay(ccosθa)=(xa)csinθPointE:yE[(1λ)μccosθ+λ(1μ)a]=xE(1λ)μcsinθyE(ccosθa)=(xEa)csinθ(1λ)μccosθ+λ(1μ)accosθa=xE(1λ)μxEa[(1λ)μccosθ+λ(1μ)a]xEa[(1λ)μccosθ+λ(1μ)a]=(1λ)μ(ccosθa)xE[(1λ)μa+λ(1μ)a]xE=a[(1λ)μccosθ+λ(1μ)a][λ+μ(12λ)]xE=(1λ)μccosθ+λ(1μ)axE=(1λ)μccosθ+λ(1μ)aλ+μ(12λ)yE=csinθ(xEa)ccosθa=csinθccosθa×[(1λ)μccosθ+λ(1μ)aaλaμ(12λ)λ+μ(12λ)]yE=csinθccosθa×[(1λ)μ(ccosθa)λ+μ(12λ)]yE=(1λ)μcsinθλ+μ(12λ)η=xGxE=(1λ)μccosθ+λ(1μ)a1λμ×λ+μ(12λ)(1λ)μccosθ+λ(1μ)aη=λ+μ(12λ)1λμ=λ+μ2λμ1λμ...(I)ε=yEyA=(1λ)μcsinθλ+μ(12λ)×1csinθε=(1λ)μλ+μ(12λ)=μλμλ+μ2λμ...(II)usingthesetworelationsallothervaluescanbedetermined.σ=ε+(1λ)(12ε)1ε(1λ)σ=(1λ)μλ+μ(12λ)+(1λ)(12(1λ)μλ+μ(12λ))1(1λ)μλ+μ(12λ)(1λ)σ=(1λ)μ+(1λ)[λ+μ(12λ)2(1λ)μ]λ+μ(12λ)(1λ)2μσ=1λ1λμρ=(1μ)+(1ε)[12(1μ)]1(1μ)(1ε)ρ=(1μ)+[1(1λ)μλ+μ(12λ)][12(1μ)]1(1μ)[1(1λ)μλ+μ(12λ)]ρ=(1μ)[λ+μ(12λ)]+[λ+μ(12λ)(1λ)μ][12(1μ)]λ+μ(12λ)(1μ)[λ+μ(12λ)(1λ)μ]ρ=1μ1λμ

Answered by ajfour last updated on 17/Feb/18

let  B be origin,  BC^(−)  = a^�   ,BA^(−)  = c^�  ,  CA^(−)  = b^�  = c^� −a^�   BG^(−)  =ρ(λa^� )+(1−ρ)c^�           =(1−σ)a^� +σ(μc^� )          = η(a^� +εb^� ) =η[a^� +ε(c^� −a^� )]  coeff. of a^�  is       λρ =1−σ = η−εη    ...(i)  coeff. of c^�  is       (1−ρ)=σμ = ηε       ...(ii)  ⇒   1−ρ = (1−λρ)μ         𝛒 = ((1−𝛍)/(1−𝛌𝛍))        σ=1−λρ = 1−(((λ−λμ)/(1−λμ)))     ⇒   𝛔 = ((1−𝛌)/(1−𝛌𝛍))    adding (i) and (ii)     η = λρ+(1−ρ)         =1−(1−λ)ρ         = 1−(((1−λ)(1−μ))/(1−λμ))       𝛈 = ((𝛍(1−𝛌)+𝛌(1−𝛍))/(1−𝛌𝛍))    ε = ((1−ρ)/η)     = [1−(((1−μ)/(1−λμ)))]×((1−λμ)/(μ(1−λ)+λ(1−μ)))        𝛆 = ((𝛍(1−𝛌))/(𝛍(1−𝛌)+𝛌(1−𝛍)))  .

letBbeorigin,BC=a¯,BA=c¯,CA=b¯=c¯a¯BG=ρ(λa¯)+(1ρ)c¯=(1σ)a¯+σ(μc¯)=η(a¯+ϵb¯)=η[a¯+ϵ(c¯a¯)]coeff.ofa¯isλρ=1σ=ηϵη...(i)coeff.ofc¯is(1ρ)=σμ=ηϵ...(ii)1ρ=(1λρ)μρ=1μ1λμσ=1λρ=1(λλμ1λμ)σ=1λ1λμadding(i)and(ii)η=λρ+(1ρ)=1(1λ)ρ=1(1λ)(1μ)1λμη=μ(1λ)+λ(1μ)1λμϵ=1ρη=[1(1μ1λμ)]×1λμμ(1λ)+λ(1μ)ϵ=μ(1λ)μ(1λ)+λ(1μ).

Commented by mrW2 last updated on 17/Feb/18

That′s really clearly laid out! Thanks sir!

Thatsreallyclearlylaidout!Thankssir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com