Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 30175 by abdo imad last updated on 17/Feb/18

prove that u_n = Σ_(k=1) ^n   (1/(n+k)) is convergente .

$${prove}\:{that}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{n}+{k}}\:{is}\:{convergente}\:. \\ $$

Commented by abdo imad last updated on 21/Feb/18

we have u_n = (1/n) Σ_(k=1) ^n   (1/(1 +(k/n))) ⇒  lim_(n→∞) u_n =lim_(n→∞) ((1−0)/n)Σ_(k=1) ^n    (1/(1+((k(1−0))/n)))   (Rieman sum)  = ∫_0 ^1        (dx/(1+x)) =[ln∣1+x∣]_0 ^1 = ln2  .

$${we}\:{have}\:{u}_{{n}} =\:\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{1}\:+\frac{{k}}{{n}}}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow\infty} {u}_{{n}} ={lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}−\mathrm{0}}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{\mathrm{1}+\frac{{k}\left(\mathrm{1}−\mathrm{0}\right)}{{n}}}\:\:\:\left({Rieman}\:{sum}\right) \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\:\frac{{dx}}{\mathrm{1}+{x}}\:=\left[{ln}\mid\mathrm{1}+{x}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} =\:{ln}\mathrm{2}\:\:. \\ $$

Commented by abdo imad last updated on 21/Feb/18

another method we have   u_n = (1/(n+1)) +(1/(n+2)) +.... (1/(2n))=1 +(1/2) +(1/3) +...+(1/n) +(1/(n+1)) +...  +(1/(2n)) −(1+(1/2) +(1/3) +...+(1/n))=H_(2n)  − H_n  but  H_(2n) =ln(2n) +γ  +o((1/n)) and H_n = ln(n) +γ +o((1/n))⇒  H_(2n)  −H_n =ln(((2n)/n)) +o((1/n)) ⇒lim_(n→∞) H_(2n)  −H_n =ln(2).so  lim_(n→∞) u_n =ln(2) .

$${another}\:{method}\:{we}\:{have}\: \\ $$$${u}_{{n}} =\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:+\frac{\mathrm{1}}{{n}+\mathrm{2}}\:+....\:\frac{\mathrm{1}}{\mathrm{2}{n}}=\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:+...+\frac{\mathrm{1}}{{n}}\:+\frac{\mathrm{1}}{{n}+\mathrm{1}}\:+... \\ $$$$+\frac{\mathrm{1}}{\mathrm{2}{n}}\:−\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:+...+\frac{\mathrm{1}}{{n}}\right)={H}_{\mathrm{2}{n}} \:−\:{H}_{{n}} \:{but} \\ $$$${H}_{\mathrm{2}{n}} ={ln}\left(\mathrm{2}{n}\right)\:+\gamma\:\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:{and}\:{H}_{{n}} =\:{ln}\left({n}\right)\:+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\Rightarrow \\ $$$${H}_{\mathrm{2}{n}} \:−{H}_{{n}} ={ln}\left(\frac{\mathrm{2}{n}}{{n}}\right)\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow{lim}_{{n}\rightarrow\infty} {H}_{\mathrm{2}{n}} \:−{H}_{{n}} ={ln}\left(\mathrm{2}\right).{so} \\ $$$${lim}_{{n}\rightarrow\infty} {u}_{{n}} ={ln}\left(\mathrm{2}\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com