Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 30178 by abdo imad last updated on 17/Feb/18

calculate  ∫_0 ^(π/2)      (dx/(1+cosx cosθ))  with −π<θ<π .

$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{cosx}\:{cos}\theta}\:\:{with}\:−\pi<\theta<\pi\:. \\ $$

Commented byprof Abdo imad last updated on 22/Feb/18

let put cosθ=t I= ∫_0 ^(π/2)     (dx/(1+tcosx)) the ch.tan((x/2))=u  give  I= ∫_0 ^∞    (1/(1+t ((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  I = ∫_0 ^∞         ((2du)/(1+u^2  +t(1−u^2 )))du  =∫_0 ^∞     ((2du)/(1+t +(1−t)u^2 ))= (2/(1+t))∫_0 ^∞    (du/(1+((1−t)/(1+t)) u^2 ))  let tben use the ch. (√((1−t)/(1+t))) u= α ⇒  I=  (2/(1+t))∫_0 ^∞      (1/(1+α^2 )) (√((1+t)/(1−t)))  dα  = (2/(√(1−t^2 ))) ∫_0 ^∞    (dα/(1+α^2 )) = (π/(√(1−t^2 ))) = (π/(√(1−cos^2 θ)))⇒  I = (π/(∣sinθ∣))  if θ≠0  also we must study the case θ=0  ....

$${let}\:{put}\:{cos}\theta={t}\:{I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dx}}{\mathrm{1}+{tcosx}}\:{the}\:{ch}.{tan}\left(\frac{{x}}{\mathrm{2}}\right)={u} \\ $$ $${give}\:\:{I}=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\mathrm{1}+{t}\:\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$ $${I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} \:+{t}\left(\mathrm{1}−{u}^{\mathrm{2}} \right)}{du} \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{du}}{\mathrm{1}+{t}\:+\left(\mathrm{1}−{t}\right){u}^{\mathrm{2}} }=\:\frac{\mathrm{2}}{\mathrm{1}+{t}}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{du}}{\mathrm{1}+\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}\:{u}^{\mathrm{2}} } \\ $$ $${let}\:{tben}\:{use}\:{the}\:{ch}.\:\sqrt{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}}\:{u}=\:\alpha\:\Rightarrow \\ $$ $${I}=\:\:\frac{\mathrm{2}}{\mathrm{1}+{t}}\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }\:\sqrt{\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}}\:\:{d}\alpha \\ $$ $$=\:\frac{\mathrm{2}}{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }\:=\:\frac{\pi}{\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:=\:\frac{\pi}{\sqrt{\mathrm{1}−{cos}^{\mathrm{2}} \theta}}\Rightarrow \\ $$ $${I}\:=\:\frac{\pi}{\mid{sin}\theta\mid}\:\:{if}\:\theta\neq\mathrm{0}\:\:{also}\:{we}\:{must}\:{study}\:{the}\:{case}\:\theta=\mathrm{0} \\ $$ $$.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com