All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 30180 by abdo imad last updated on 17/Feb/18
find∫0π2xsinxcosxtan2x+cotan2xdx.(usethech.x=π2−t).
Commented by abdo imad last updated on 24/Feb/18
ch.x=π2−tgiveI=∫0π2(π2−t)costsintcotan2t+tan2tdt=π2∫0π2dttan2t+cotan2t−∫0π2sint?costtan2t+cotan2tdt⇒2I=π2∫0π2dttan2t+cotan2tdtthech.tant=ugive∫0π2dttan2t+cotan2t=∫0∞1u2+1u2du1+u2=∫0∞u2(1+u2)(1+u4)du=∫0∞1+u2−1(1+u2)(1+u4)du=∫0∞du1+u4−∫0∞du(1+u2)(1+u4)thech.u4=xgive∫0∞du1+u4=∫0∞14x14−11+xdx=14πsin(π4)=π4112=π24.letdecomposeF(x)=1(1+u2)(1+u4)F(x)=1(1+u2)((u2+1)2−2u2)=1(1+u2)(u2+1−2u)(u2+1+2u)=au+b1+u2+cu+du2−2u+1+eu+fu2+2u+1....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com