Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 30180 by abdo imad last updated on 17/Feb/18

find  ∫_0 ^(π/2)    ((x sinx cosx)/(tan^2 x +cotan^2 x))dx .(use the ch.x=(π/2) −t).

find0π2xsinxcosxtan2x+cotan2xdx.(usethech.x=π2t).

Commented by abdo imad last updated on 24/Feb/18

ch.x=(π/2) −t give  I= ∫_0 ^(π/2) ((((π/2)−t)cost sint)/(cotan^2 t +tan^2 t))dt  = (π/2)∫_0 ^(π/2)  (dt/(tan^2 t +cotan^2 t))   −∫_0 ^(π/2)     ((sint?cost)/(tan^2 t +cotan^2 t))dt  ⇒  2I= (π/2) ∫_0 ^(π/2)     (dt/(tan^2 t +cotan^2 t)) dt  the ch. tant= u give  ∫_0 ^(π/2)      (dt/(tan^2 t +cotan^2 t))= ∫_0 ^∞     (1/(u^(2 )  +(1/u^2 ))) (du/(1+u^2 ))  = ∫_0 ^∞     (u^2 /((1+u^2 )(1+u^4 )))du= ∫_0 ^∞  ((1+u^2  −1)/((1+u^2 )(1+u^4 )))du  = ∫_0 ^∞   (du/(1+u^4 ))  −∫_0 ^∞   (du/((1+u^2 )(1+u^4 ))) the ch. u^4 =x give  ∫_0 ^∞   (du/(1+u^4 )) = ∫_0 ^∞   (((1/4)x^((1/4)−1) )/(1+x))dx= (1/4) (π/(sin((π/4))))  = (π/4) (1/(1/(√2)))= ((π(√2))/4) .let decompose F(x)= (1/((1+u^2 )(1+u^4 )))  F(x)=  (1/((1+u^2 )( (u^2 +1)^2  −2u^2 )))  =  (1/((1+u^2 )(u^2  +1 −(√2)u)( u^2  +1 +(√2) u)))  = ((au+b)/(1+u^2 )) +((cu +d)/(u^2  −(√2)u +1)) + ((eu +f)/(u^2  + (√2)u +1)) ....be continued...

ch.x=π2tgiveI=0π2(π2t)costsintcotan2t+tan2tdt=π20π2dttan2t+cotan2t0π2sint?costtan2t+cotan2tdt2I=π20π2dttan2t+cotan2tdtthech.tant=ugive0π2dttan2t+cotan2t=01u2+1u2du1+u2=0u2(1+u2)(1+u4)du=01+u21(1+u2)(1+u4)du=0du1+u40du(1+u2)(1+u4)thech.u4=xgive0du1+u4=014x1411+xdx=14πsin(π4)=π4112=π24.letdecomposeF(x)=1(1+u2)(1+u4)F(x)=1(1+u2)((u2+1)22u2)=1(1+u2)(u2+12u)(u2+1+2u)=au+b1+u2+cu+du22u+1+eu+fu2+2u+1....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com