All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 30184 by abdo imad last updated on 17/Feb/18
find∫122(1+1x2)arctanxdx.(arctan=tan−1).
Commented by abdo imad last updated on 20/Feb/18
thech.x=1tgiveI=∫122(1+t2)arctan(1t)dtt2=∫122(1+1t2)(π2−arctant)dt=π2∫122(1+1t2)dt−∫122(1+1t2)arctantdt⇒2I=π2∫122(1+1t2)dt2I=π232+π2[−1t]122=3π4+π2(2−12)=3π4+3π4=3π2⇒I=3π4.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com