Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 30214 by abdo imad last updated on 18/Feb/18

study the convergence of u_n = Σ_(k=1) ^n (−1)^(k−1)   (C_n ^k /k)  for that use H_n = Σ_(k=1) ^n  (1/k) .

$${study}\:{the}\:{convergence}\:{of}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \:\:\frac{{C}_{{n}} ^{{k}} }{{k}} \\ $$$${for}\:{that}\:{use}\:{H}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:. \\ $$

Commented by prof Abdo imad last updated on 22/Feb/18

let condider  p(x)= Σ_(k=1) ^n (−1)^(k−1) (C_n ^k /k) x^k  we have  p^′ (x)= Σ_(k=1) ^n  C_n ^k  (−1)^(k−1)  x^(k−1)   =((−1)/x)Σ_(k=1) ^n   C_n ^k  (−1)^k  x^k  =−(1/x)(Σ_(k=0) ^n (−1)^k x^k  −1)  =(1/x)( 1−(1−x)^n )=((1−(1−x)^n )/x) ⇒  p(x)= ∫_0 ^x     ((1−(1−t)^n )/t)dt +λ  but λ=p(0)=0⇒  p(x)= ∫_0 ^x   ((1−(1−t)^n )/t)dt  and u_n =p(1)⇒  u_n = ∫_0 ^1    ((1−(1−t)^n )/t)dt =  = ∫_0 ^1  ((1+(1−t) +(1−t)^2  +....(1−t)^(n−1) )dt  =∫_0 ^1 Σ_(k=0) ^(n−1) (1−t)^k dt= Σ_(k=0) ^(n−1)   ∫_0 ^1  (1−t)^k dt  =Σ_(k=0) ^(n−1)  [((−1)/(k+1))(1−t)^(k+1) ]_0 ^1 =Σ_(k=0) ^(n−1)   (1/(k+1)) = H_n  but  H_n  ∼ln(n) for n→∞  ⇒lim_(n→∞) u_n =+∞.

$${let}\:{condider}\:\:{p}\left({x}\right)=\:\sum_{{k}=\mathrm{1}} ^{{n}} \left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \frac{{C}_{{n}} ^{{k}} }{{k}}\:{x}^{{k}} \:{we}\:{have} \\ $$$${p}^{'} \left({x}\right)=\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \:{x}^{{k}−\mathrm{1}} \\ $$$$=\frac{−\mathrm{1}}{{x}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}} \:{x}^{{k}} \:=−\frac{\mathrm{1}}{{x}}\left(\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} {x}^{{k}} \:−\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}}{{x}}\left(\:\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} \right)=\frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}\:\Rightarrow \\ $$$${p}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\:\:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:+\lambda\:\:{but}\:\lambda={p}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow \\ $$$${p}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:\:{and}\:{u}_{{n}} ={p}\left(\mathrm{1}\right)\Rightarrow \\ $$$${u}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:= \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\left(\mathrm{1}+\left(\mathrm{1}−{t}\right)\:+\left(\mathrm{1}−{t}\right)^{\mathrm{2}} \:+....\left(\mathrm{1}−{t}\right)^{{n}−\mathrm{1}} \right){dt}\right. \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{k}} {dt}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−{t}\right)^{{k}} {dt} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left[\frac{−\mathrm{1}}{{k}+\mathrm{1}}\left(\mathrm{1}−{t}\right)^{{k}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{{k}+\mathrm{1}}\:=\:{H}_{{n}} \:{but} \\ $$$${H}_{{n}} \:\sim{ln}\left({n}\right)\:{for}\:{n}\rightarrow\infty\:\:\Rightarrow{lim}_{{n}\rightarrow\infty} {u}_{{n}} =+\infty. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com