Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 30233 by ajfour last updated on 18/Feb/18

Commented by ajfour last updated on 18/Feb/18

Find maximum area of quadrilateral  ABCD  if  sides AB, BC, CD, DA  be a, b, c, d  respectively, with    a < b < c < d .

$${Find}\:{maximum}\:{area}\:{of}\:{quadrilateral} \\ $$$${ABCD}\:\:{if}\:\:{sides}\:{AB},\:{BC},\:{CD},\:{DA} \\ $$$${be}\:{a},\:{b},\:{c},\:{d}\:\:{respectively},\:{with} \\ $$$$\:\:{a}\:<\:{b}\:<\:{c}\:<\:{d}\:. \\ $$

Answered by mrW2 last updated on 19/Feb/18

let ∠B=α, ∠D=β<α  a^2 +b^2 −2ab cos α=c^2 +d^2 −2cd cos β  ab sin α=cd sin β (dβ/dα)  A=(1/2)(ab sin α+cd sin β)  (dA/dα)=(1/2)[ab cos α+cd cos β (((ab sin α)/(cd sin β)))]  (dA/dα)=(1/2)ab (cos α+((sin α)/(tan β)))=0  ⇒tan α=−tan β  ⇒α=π−β or α+β=π⇒cyclic!    a^2 +b^2 +2ab cos β=c^2 +d^2 −2cd cos β  2(ab+cd)cos β=c^2 +d^2 −a^2 −b^2   ⇒cos β=((c^2 +d^2 −a^2 −b^2 )/(2(ab+cd)))  ⇒sin β=(√(1−(((c^2 +d^2 −a^2 −b^2 )^2 )/(4(ab+cd)^2 )))) =((√((2ab+2cd+c^2 +d^2 −a^2 −b^2 )(2ab+2cd−c^2 −d^2 +a^2 +b^2 )))/(2(ab+cd)))  ⇒sin β =((√([(c+d)^2 −(a−b)^2 ][(a+b)^2 −(c−d)^2 ]))/(2(ab+cd)))  ⇒sin β =((√((−a+b+c+d)(a−b+c+d)(a+b−c+d)(a+b+c−d)))/(2(ab+cd)))  ⇒sin α=sin β  A_(max) =(1/2)(ab+cd) sin β=(1/2)(ab+cd)×((√((−a+b+c+d)(a−b+c+d)(a+b−c+d)(a+b+c−d)))/(2(ab+cd)))  ⇒A_(max) =(1/4)(√((−a+b+c+d)(a−b+c+d)(a+b−c+d)(a+b+c−d)))  with s=((a+b+c+d)/2)  ⇒A_(max) =(√((s−a)(s−b)(s−c)(s−d)))

$${let}\:\angle{B}=\alpha,\:\angle{D}=\beta<\alpha \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\alpha={c}^{\mathrm{2}} +{d}^{\mathrm{2}} −\mathrm{2}{cd}\:\mathrm{cos}\:\beta \\ $$$${ab}\:\mathrm{sin}\:\alpha={cd}\:\mathrm{sin}\:\beta\:\frac{{d}\beta}{{d}\alpha} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left({ab}\:\mathrm{sin}\:\alpha+{cd}\:\mathrm{sin}\:\beta\right) \\ $$$$\frac{{dA}}{{d}\alpha}=\frac{\mathrm{1}}{\mathrm{2}}\left[{ab}\:\mathrm{cos}\:\alpha+{cd}\:\mathrm{cos}\:\beta\:\left(\frac{{ab}\:\mathrm{sin}\:\alpha}{{cd}\:\mathrm{sin}\:\beta}\right)\right] \\ $$$$\frac{{dA}}{{d}\alpha}=\frac{\mathrm{1}}{\mathrm{2}}{ab}\:\left(\mathrm{cos}\:\alpha+\frac{\mathrm{sin}\:\alpha}{\mathrm{tan}\:\beta}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{tan}\:\alpha=−\mathrm{tan}\:\beta \\ $$$$\Rightarrow\alpha=\pi−\beta\:{or}\:\alpha+\beta=\pi\Rightarrow{cyclic}! \\ $$$$ \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\beta={c}^{\mathrm{2}} +{d}^{\mathrm{2}} −\mathrm{2}{cd}\:\mathrm{cos}\:\beta \\ $$$$\mathrm{2}\left({ab}+{cd}\right)\mathrm{cos}\:\beta={c}^{\mathrm{2}} +{d}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{cos}\:\beta=\frac{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}\left({ab}+{cd}\right)} \\ $$$$\Rightarrow\mathrm{sin}\:\beta=\sqrt{\mathrm{1}−\frac{\left({c}^{\mathrm{2}} +{d}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{4}\left({ab}+{cd}\right)^{\mathrm{2}} }}\:=\frac{\sqrt{\left(\mathrm{2}{ab}+\mathrm{2}{cd}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left(\mathrm{2}{ab}+\mathrm{2}{cd}−{c}^{\mathrm{2}} −{d}^{\mathrm{2}} +{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}}{\mathrm{2}\left({ab}+{cd}\right)} \\ $$$$\Rightarrow\mathrm{sin}\:\beta\:=\frac{\sqrt{\left[\left({c}+{d}\right)^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} \right]\left[\left({a}+{b}\right)^{\mathrm{2}} −\left({c}−{d}\right)^{\mathrm{2}} \right]}}{\mathrm{2}\left({ab}+{cd}\right)} \\ $$$$\Rightarrow\mathrm{sin}\:\beta\:=\frac{\sqrt{\left(−{a}+{b}+{c}+{d}\right)\left({a}−{b}+{c}+{d}\right)\left({a}+{b}−{c}+{d}\right)\left({a}+{b}+{c}−{d}\right)}}{\mathrm{2}\left({ab}+{cd}\right)} \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\mathrm{sin}\:\beta \\ $$$${A}_{{max}} =\frac{\mathrm{1}}{\mathrm{2}}\left({ab}+{cd}\right)\:\mathrm{sin}\:\beta=\frac{\mathrm{1}}{\mathrm{2}}\left({ab}+{cd}\right)×\frac{\sqrt{\left(−{a}+{b}+{c}+{d}\right)\left({a}−{b}+{c}+{d}\right)\left({a}+{b}−{c}+{d}\right)\left({a}+{b}+{c}−{d}\right)}}{\mathrm{2}\left({ab}+{cd}\right)} \\ $$$$\Rightarrow{A}_{{max}} =\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\left(−{a}+{b}+{c}+{d}\right)\left({a}−{b}+{c}+{d}\right)\left({a}+{b}−{c}+{d}\right)\left({a}+{b}+{c}−{d}\right)} \\ $$$${with}\:{s}=\frac{{a}+{b}+{c}+{d}}{\mathrm{2}} \\ $$$$\Rightarrow{A}_{{max}} =\sqrt{\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)\left({s}−{d}\right)} \\ $$

Commented by ajfour last updated on 19/Feb/18

Wonderful answer. Thank you Sir.

$${Wonderful}\:{answer}.\:{Thank}\:{you}\:{Sir}. \\ $$

Commented by mrW2 last updated on 19/Feb/18

if perimeter of quadrilateral is l, find  the maximal possible area of it.  let the first three side lengths are x,y,z.   A=(1/4)(√((l−2x)(l−2y)(l−2z)(2x+2y+2z−l)))  f(x,y,z)=(√((l−2x)(l−2y)(l−2z)(2x+2y+2z−l)))  (∂f/∂x)=((−2(2x+2y+2z−l)+2(l−2x))/(2f))=((2(l−2x−y−z))/f)=0  ⇒l=2x+y+z  similarly  ⇒l=2y+x+z  ⇒l=2z+y+x  ⇒3l=4(x+y+z)  ⇒x+y+z=((3l)/4)  ⇒l=2x+y+z=x+((3l)/4)  ⇒x=(l/4)  similarly  ⇒y=(l/4)  ⇒z=(l/4)  ⇒area is maximal if it′s a square.  A_(max) =(l^2 /(16))

$${if}\:{perimeter}\:{of}\:{quadrilateral}\:{is}\:{l},\:{find} \\ $$$${the}\:{maximal}\:{possible}\:{area}\:{of}\:{it}. \\ $$$${let}\:{the}\:{first}\:{three}\:{side}\:{lengths}\:{are}\:{x},{y},{z}.\: \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\left({l}−\mathrm{2}{x}\right)\left({l}−\mathrm{2}{y}\right)\left({l}−\mathrm{2}{z}\right)\left(\mathrm{2}{x}+\mathrm{2}{y}+\mathrm{2}{z}−{l}\right)} \\ $$$${f}\left({x},{y},{z}\right)=\sqrt{\left({l}−\mathrm{2}{x}\right)\left({l}−\mathrm{2}{y}\right)\left({l}−\mathrm{2}{z}\right)\left(\mathrm{2}{x}+\mathrm{2}{y}+\mathrm{2}{z}−{l}\right)} \\ $$$$\frac{\partial{f}}{\partial{x}}=\frac{−\mathrm{2}\left(\mathrm{2}{x}+\mathrm{2}{y}+\mathrm{2}{z}−{l}\right)+\mathrm{2}\left({l}−\mathrm{2}{x}\right)}{\mathrm{2}{f}}=\frac{\mathrm{2}\left({l}−\mathrm{2}{x}−{y}−{z}\right)}{{f}}=\mathrm{0} \\ $$$$\Rightarrow{l}=\mathrm{2}{x}+{y}+{z} \\ $$$${similarly} \\ $$$$\Rightarrow{l}=\mathrm{2}{y}+{x}+{z} \\ $$$$\Rightarrow{l}=\mathrm{2}{z}+{y}+{x} \\ $$$$\Rightarrow\mathrm{3}{l}=\mathrm{4}\left({x}+{y}+{z}\right) \\ $$$$\Rightarrow{x}+{y}+{z}=\frac{\mathrm{3}{l}}{\mathrm{4}} \\ $$$$\Rightarrow{l}=\mathrm{2}{x}+{y}+{z}={x}+\frac{\mathrm{3}{l}}{\mathrm{4}} \\ $$$$\Rightarrow{x}=\frac{{l}}{\mathrm{4}} \\ $$$${similarly} \\ $$$$\Rightarrow{y}=\frac{{l}}{\mathrm{4}} \\ $$$$\Rightarrow{z}=\frac{{l}}{\mathrm{4}} \\ $$$$\Rightarrow{area}\:{is}\:{maximal}\:{if}\:{it}'{s}\:{a}\:{square}. \\ $$$${A}_{{max}} =\frac{{l}^{\mathrm{2}} }{\mathrm{16}} \\ $$

Commented by ajfour last updated on 19/Feb/18

Good way to verify Sir!

$${Good}\:{way}\:{to}\:{verify}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com