Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 30258 by mondodotto@gmail.com last updated on 19/Feb/18

Answered by $@ty@m last updated on 19/Feb/18

Let sec x−1=z  tan^2 xdx=dz  dx=(dz/(sec^2 x−1))=(dz/(z(z+2)))  I=∫(dx/(z^2 (z+2)))   Let (1/(z^2 (z+2)))=(A/z^2 )+(B/(z+2))+(C/z)  ⇒A(z+2)+Bz^2 +Cz(z+2)≡1  ⇒A=(1/2), B=(1/4)&  A+B−C=1⇒C=((−1)/4)  ∴I=∫(dz/(2z^2 ))+∫(dz/(4(z+2)))−∫(dz/(4z))  =(1/2)(((−1)/z))+(1/4)ln (z+2)−(1/4)ln z+C  = ((−1)/(2(sec x−1)))+(1/4)ln (sec x+1)−(1/4)ln (sec x−1)+C

Letsecx1=ztan2xdx=dzdx=dzsec2x1=dzz(z+2)I=dxz2(z+2)Let1z2(z+2)=Az2+Bz+2+CzA(z+2)+Bz2+Cz(z+2)1A=12,B=14&A+BC=1C=14I=dz2z2+dz4(z+2)dz4z=12(1z)+14ln(z+2)14lnz+C=12(secx1)+14ln(secx+1)14ln(secx1)+C

Commented by rahul 19 last updated on 19/Feb/18

try my ques. then :)

trymyques.then:)

Commented by $@ty@m last updated on 19/Feb/18

Not as challanging as claimed.  :(

Notaschallangingasclaimed.:(

Answered by ajfour last updated on 19/Feb/18

∫(dx/(sec x−1)) = ∫((sec x+1)/(sec^2 x−1))dx  =∫ (((sec x+1))/(tan^2 x))dx   =∫cosec xcot xdx +∫cot^2 xdx  =−cosec x+c_1 +∫(cosec^2 x−1)dx   = −cosec x−cot x−x−c .

dxsecx1=secx+1sec2x1dx=(secx+1)tan2xdx=cosecxcotxdx+cot2xdx=cosecx+c1+(cosec2x1)dx=cosecxcotxxc.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com