Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 30259 by mondodotto@gmail.com last updated on 19/Feb/18

Commented by prof Abdo imad last updated on 20/Feb/18

we have  (x/(x−1)) −(1/(lnx))= ((xlnx −x+1)/((x−1)lnx))=((u(x))/(v(x)))  we hsve u(1)=v(1)=0 let use hospital theorem  u^′ (x)=1+lnx −1⇒u^(′′) (x)= (1/x) anf u^(′′) (1)=1  v^′ (x)=lnx +((x−1)/x)=lnx +1 −(1/x)⇒v^(′′) (x)=(1/x) +(1/x^2 )  ⇒v^(′′) (1)=2  ⇒ lim (....)= (1/2)    .

wehavexx11lnx=xlnxx+1(x1)lnx=u(x)v(x)wehsveu(1)=v(1)=0letusehospitaltheoremu(x)=1+lnx1u(x)=1xanfu(1)=1v(x)=lnx+x1x=lnx+11xv(x)=1x+1x2v(1)=2lim(....)=12.

Answered by $@ty@m last updated on 19/Feb/18

We have  ln x=ln {1+(x−1)}  =(x−1)−(((x−1)^2 )/2)+...  ∴lim_(x→1) ((x/(x−1))−(1/(ln x)))  ∴lim_(x→1) ((x/(x−1))−(1/((x−1)−(((x−1)^2 )/2)+(((x−1)^3 )/3)−...)))  lim_(x→1) (1/(x−1)){x−(1/(1−((x−1)/2)+(((x−1)^2 )/3)−..))}  lim_(x→1) (1/(x−1))[((x{1−((x−1)/2)+(((x−1)^2 )/3)−..}−1)/(1−((x−1)/2)+(((x−1)^2 )/3)−..))]  lim_(x→1) (1/(x−1))[(((x−1)−((x(x−1))/2)+((x(x−1)^2 )/3)−..)/(1−((x−1)/2)+(((x−1)^2 )/3)−..))]  lim_(x→1) ((x−1)/(x−1))[((1−(x/2)+((x(x−1))/3)−..)/(1−((x−1)/2)+(((x−1)^2 )/3)−..))]  =(1/2)

Wehavelnx=ln{1+(x1)}=(x1)(x1)22+...limx1(xx11lnx)limx1(xx11(x1)(x1)22+(x1)33...)limx11x1{x11x12+(x1)23..}limx11x1[x{1x12+(x1)23..}11x12+(x1)23..]limx11x1[(x1)x(x1)2+x(x1)23..1x12+(x1)23..]limx1x1x1[1x2+x(x1)3..1x12+(x1)23..]=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com