Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 30259 by mondodotto@gmail.com last updated on 19/Feb/18

Commented by prof Abdo imad last updated on 20/Feb/18

we have  (x/(x−1)) −(1/(lnx))= ((xlnx −x+1)/((x−1)lnx))=((u(x))/(v(x)))  we hsve u(1)=v(1)=0 let use hospital theorem  u^′ (x)=1+lnx −1⇒u^(′′) (x)= (1/x) anf u^(′′) (1)=1  v^′ (x)=lnx +((x−1)/x)=lnx +1 −(1/x)⇒v^(′′) (x)=(1/x) +(1/x^2 )  ⇒v^(′′) (1)=2  ⇒ lim (....)= (1/2)    .

$${we}\:{have}\:\:\frac{{x}}{{x}−\mathrm{1}}\:−\frac{\mathrm{1}}{{lnx}}=\:\frac{{xlnx}\:−{x}+\mathrm{1}}{\left({x}−\mathrm{1}\right){lnx}}=\frac{{u}\left({x}\right)}{{v}\left({x}\right)} \\ $$$${we}\:{hsve}\:{u}\left(\mathrm{1}\right)={v}\left(\mathrm{1}\right)=\mathrm{0}\:{let}\:{use}\:{hospital}\:{theorem} \\ $$$${u}^{'} \left({x}\right)=\mathrm{1}+{lnx}\:−\mathrm{1}\Rightarrow{u}^{''} \left({x}\right)=\:\frac{\mathrm{1}}{{x}}\:{anf}\:{u}^{''} \left(\mathrm{1}\right)=\mathrm{1} \\ $$$${v}^{'} \left({x}\right)={lnx}\:+\frac{{x}−\mathrm{1}}{{x}}={lnx}\:+\mathrm{1}\:−\frac{\mathrm{1}}{{x}}\Rightarrow{v}^{''} \left({x}\right)=\frac{\mathrm{1}}{{x}}\:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$$\Rightarrow{v}^{''} \left(\mathrm{1}\right)=\mathrm{2}\:\:\Rightarrow\:{lim}\:\left(....\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:. \\ $$

Answered by $@ty@m last updated on 19/Feb/18

We have  ln x=ln {1+(x−1)}  =(x−1)−(((x−1)^2 )/2)+...  ∴lim_(x→1) ((x/(x−1))−(1/(ln x)))  ∴lim_(x→1) ((x/(x−1))−(1/((x−1)−(((x−1)^2 )/2)+(((x−1)^3 )/3)−...)))  lim_(x→1) (1/(x−1)){x−(1/(1−((x−1)/2)+(((x−1)^2 )/3)−..))}  lim_(x→1) (1/(x−1))[((x{1−((x−1)/2)+(((x−1)^2 )/3)−..}−1)/(1−((x−1)/2)+(((x−1)^2 )/3)−..))]  lim_(x→1) (1/(x−1))[(((x−1)−((x(x−1))/2)+((x(x−1)^2 )/3)−..)/(1−((x−1)/2)+(((x−1)^2 )/3)−..))]  lim_(x→1) ((x−1)/(x−1))[((1−(x/2)+((x(x−1))/3)−..)/(1−((x−1)/2)+(((x−1)^2 )/3)−..))]  =(1/2)

$${We}\:{have} \\ $$$$\mathrm{ln}\:{x}=\mathrm{ln}\:\left\{\mathrm{1}+\left({x}−\mathrm{1}\right)\right\} \\ $$$$=\left({x}−\mathrm{1}\right)−\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}}+... \\ $$$$\therefore\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{{x}}{{x}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{ln}\:{x}}\right) \\ $$$$\therefore\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{{x}}{{x}−\mathrm{1}}−\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)−\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}}+\frac{\left({x}−\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{3}}−...}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}−\mathrm{1}}\left\{{x}−\frac{\mathrm{1}}{\mathrm{1}−\frac{{x}−\mathrm{1}}{\mathrm{2}}+\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{3}}−..}\right\} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}−\mathrm{1}}\left[\frac{{x}\left\{\mathrm{1}−\frac{{x}−\mathrm{1}}{\mathrm{2}}+\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{3}}−..\right\}−\mathrm{1}}{\mathrm{1}−\frac{{x}−\mathrm{1}}{\mathrm{2}}+\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{3}}−..}\right] \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}−\mathrm{1}}\left[\frac{\left({x}−\mathrm{1}\right)−\frac{{x}\left({x}−\mathrm{1}\right)}{\mathrm{2}}+\frac{{x}\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{3}}−..}{\mathrm{1}−\frac{{x}−\mathrm{1}}{\mathrm{2}}+\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{3}}−..}\right] \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{x}−\mathrm{1}}{{x}−\mathrm{1}}\left[\frac{\mathrm{1}−\frac{{x}}{\mathrm{2}}+\frac{{x}\left({x}−\mathrm{1}\right)}{\mathrm{3}}−..}{\mathrm{1}−\frac{{x}−\mathrm{1}}{\mathrm{2}}+\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{3}}−..}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com