All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 30259 by mondodotto@gmail.com last updated on 19/Feb/18
Commented by prof Abdo imad last updated on 20/Feb/18
wehavexx−1−1lnx=xlnx−x+1(x−1)lnx=u(x)v(x)wehsveu(1)=v(1)=0letusehospitaltheoremu′(x)=1+lnx−1⇒u″(x)=1xanfu″(1)=1v′(x)=lnx+x−1x=lnx+1−1x⇒v″(x)=1x+1x2⇒v″(1)=2⇒lim(....)=12.
Answered by $@ty@m last updated on 19/Feb/18
Wehavelnx=ln{1+(x−1)}=(x−1)−(x−1)22+...∴limx→1(xx−1−1lnx)∴limx→1(xx−1−1(x−1)−(x−1)22+(x−1)33−...)limx→11x−1{x−11−x−12+(x−1)23−..}limx→11x−1[x{1−x−12+(x−1)23−..}−11−x−12+(x−1)23−..]limx→11x−1[(x−1)−x(x−1)2+x(x−1)23−..1−x−12+(x−1)23−..]limx→1x−1x−1[1−x2+x(x−1)3−..1−x−12+(x−1)23−..]=12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com