Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 30364 by ajfour last updated on 21/Feb/18

Commented by ajfour last updated on 21/Feb/18

If the parabola with focus F_0   rolls on the circumference of  circle (centred at origin and  having radius r), then find the  locus of the focus F of the rolling  parabola.

$${If}\:{the}\:{parabola}\:{with}\:{focus}\:{F}_{\mathrm{0}} \\ $$$${rolls}\:{on}\:{the}\:{circumference}\:{of} \\ $$$${circle}\:\left({centred}\:{at}\:{origin}\:{and}\right. \\ $$$$\left.{having}\:{radius}\:{r}\right),\:{then}\:{find}\:{the} \\ $$$${locus}\:{of}\:{the}\:{focus}\:{F}\:{of}\:{the}\:{rolling} \\ $$$${parabola}. \\ $$

Commented by ajfour last updated on 21/Feb/18

Answered by mrW2 last updated on 22/Feb/18

Commented by mrW2 last updated on 23/Feb/18

Eqn. of parabola in u−v−system:  v=cu^2  with c=(1/(4a))    At point T(u,v):  tan φ=(dv/du)=2cu  ⇒u=((tan φ)/(2c))=2a tan φ=GT  ⇒v=((tan^2  φ)/(4c))=a tan^2  φ=GV  Length of parabola VT^(⌢) =l  l=∫_0 ^( u) (√(1+((dv/du))^2 )) du=2a∫_0 ^( φ) (√(1+tan^2  φ)) d(tan φ)  =a[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]  ST^(⌢) =VT^(⌢) =l  rθ=a[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]  ⇒θ=(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]    FG=GV−FV=v−a=a(tan^2  φ−1)    Point F(x,y) in x−y−system:  x=r sin θ+2a tan φ cos (π−φ−θ)−a(tan^2  φ−1) sin (π−φ−θ)  ⇒x=r sin θ−2a tan φ cos (φ+θ)−a(tan^2  φ−1) sin (φ+θ)  ⇒x(φ)=r sin {(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]}−2a tan φ cos {φ+(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]}−a(tan^2  φ−1) sin {φ+(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]}    y=r cos θ+2a tan φ sin (π−φ−θ)+a(tan^2  φ−1) cos (π−φ−θ)  y=r cos θ+2a tan φ sin (φ+θ)−a(tan^2  φ−1) cos (φ+θ)  ⇒y(φ)=r cos {(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]}+2a tan φ sin {φ+(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]}−a(tan^2  φ−1) cos {φ+(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]}    locus of focus F is:  x(φ)=r sin {(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]}−2a tan φ cos {φ+(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]}−a(tan^2  φ−1) sin {φ+(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]}  y(φ)=r cos {(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]}+2a tan φ sin {φ+(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]}−a(tan^2  φ−1) cos {φ+(a/r)[tan φ (√(1+tan^2  φ))+ln (tan φ+(√(1+tan^2  φ)))]}  with −(π/2)<φ<(π/2)

$${Eqn}.\:{of}\:{parabola}\:{in}\:{u}−{v}−{system}: \\ $$$${v}={cu}^{\mathrm{2}} \:{with}\:{c}=\frac{\mathrm{1}}{\mathrm{4}{a}} \\ $$$$ \\ $$$${At}\:{point}\:{T}\left({u},{v}\right): \\ $$$$\mathrm{tan}\:\phi=\frac{{dv}}{{du}}=\mathrm{2}{cu} \\ $$$$\Rightarrow{u}=\frac{\mathrm{tan}\:\phi}{\mathrm{2}{c}}=\mathrm{2}{a}\:\mathrm{tan}\:\phi={GT} \\ $$$$\Rightarrow{v}=\frac{\mathrm{tan}^{\mathrm{2}} \:\phi}{\mathrm{4}{c}}={a}\:\mathrm{tan}^{\mathrm{2}} \:\phi={GV} \\ $$$${Length}\:{of}\:{parabola}\:\overset{\frown} {{VT}}={l} \\ $$$${l}=\int_{\mathrm{0}} ^{\:{u}} \sqrt{\mathrm{1}+\left(\frac{{dv}}{{du}}\right)^{\mathrm{2}} }\:{du}=\mathrm{2}{a}\int_{\mathrm{0}} ^{\:\phi} \sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\:{d}\left(\mathrm{tan}\:\phi\right) \\ $$$$={a}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right] \\ $$$$\overset{\frown} {{ST}}=\overset{\frown} {{VT}}={l} \\ $$$${r}\theta={a}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right] \\ $$$$\Rightarrow\theta=\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right] \\ $$$$ \\ $$$${FG}={GV}−{FV}={v}−{a}={a}\left(\mathrm{tan}^{\mathrm{2}} \:\phi−\mathrm{1}\right) \\ $$$$ \\ $$$${Point}\:{F}\left({x},{y}\right)\:{in}\:{x}−{y}−{system}: \\ $$$${x}={r}\:\mathrm{sin}\:\theta+\mathrm{2}{a}\:\mathrm{tan}\:\phi\:\mathrm{cos}\:\left(\pi−\phi−\theta\right)−{a}\left(\mathrm{tan}^{\mathrm{2}} \:\phi−\mathrm{1}\right)\:\mathrm{sin}\:\left(\pi−\phi−\theta\right) \\ $$$$\Rightarrow{x}={r}\:\mathrm{sin}\:\theta−\mathrm{2}{a}\:\mathrm{tan}\:\phi\:\mathrm{cos}\:\left(\phi+\theta\right)−{a}\left(\mathrm{tan}^{\mathrm{2}} \:\phi−\mathrm{1}\right)\:\mathrm{sin}\:\left(\phi+\theta\right) \\ $$$$\Rightarrow{x}\left(\phi\right)={r}\:\mathrm{sin}\:\left\{\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right]\right\}−\mathrm{2}{a}\:\mathrm{tan}\:\phi\:\mathrm{cos}\:\left\{\phi+\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right]\right\}−{a}\left(\mathrm{tan}^{\mathrm{2}} \:\phi−\mathrm{1}\right)\:\mathrm{sin}\:\left\{\phi+\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right]\right\} \\ $$$$ \\ $$$${y}={r}\:\mathrm{cos}\:\theta+\mathrm{2}{a}\:\mathrm{tan}\:\phi\:\mathrm{sin}\:\left(\pi−\phi−\theta\right)+{a}\left(\mathrm{tan}^{\mathrm{2}} \:\phi−\mathrm{1}\right)\:\mathrm{cos}\:\left(\pi−\phi−\theta\right) \\ $$$${y}={r}\:\mathrm{cos}\:\theta+\mathrm{2}{a}\:\mathrm{tan}\:\phi\:\mathrm{sin}\:\left(\phi+\theta\right)−{a}\left(\mathrm{tan}^{\mathrm{2}} \:\phi−\mathrm{1}\right)\:\mathrm{cos}\:\left(\phi+\theta\right) \\ $$$$\Rightarrow{y}\left(\phi\right)={r}\:\mathrm{cos}\:\left\{\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right]\right\}+\mathrm{2}{a}\:\mathrm{tan}\:\phi\:\mathrm{sin}\:\left\{\phi+\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right]\right\}−{a}\left(\mathrm{tan}^{\mathrm{2}} \:\phi−\mathrm{1}\right)\:\mathrm{cos}\:\left\{\phi+\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right]\right\} \\ $$$$ \\ $$$${locus}\:{of}\:{focus}\:{F}\:{is}: \\ $$$${x}\left(\phi\right)={r}\:\mathrm{sin}\:\left\{\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right]\right\}−\mathrm{2}{a}\:\mathrm{tan}\:\phi\:\mathrm{cos}\:\left\{\phi+\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right]\right\}−{a}\left(\mathrm{tan}^{\mathrm{2}} \:\phi−\mathrm{1}\right)\:\mathrm{sin}\:\left\{\phi+\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right]\right\} \\ $$$${y}\left(\phi\right)={r}\:\mathrm{cos}\:\left\{\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right]\right\}+\mathrm{2}{a}\:\mathrm{tan}\:\phi\:\mathrm{sin}\:\left\{\phi+\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right]\right\}−{a}\left(\mathrm{tan}^{\mathrm{2}} \:\phi−\mathrm{1}\right)\:\mathrm{cos}\:\left\{\phi+\frac{{a}}{{r}}\left[\mathrm{tan}\:\phi\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{ln}\:\left(\mathrm{tan}\:\phi+\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}\right)\right]\right\} \\ $$$${with}\:−\frac{\pi}{\mathrm{2}}<\phi<\frac{\pi}{\mathrm{2}} \\ $$

Commented by ajfour last updated on 23/Feb/18

Thank you Sir, you have presented  it as good as it can be !

$${Thank}\:{you}\:{Sir},\:{you}\:{have}\:{presented} \\ $$$${it}\:{as}\:{good}\:{as}\:{it}\:{can}\:{be}\:! \\ $$

Commented by ajfour last updated on 23/Feb/18

T(u,v)   u=p  v=(u^2 /(4a))    ⇒   tan φ=(u/(2a))  or (p/(2a))  l=ST = VT   l= r𝛉 = (u/(4a))(√(1+(u^2 /(4a^2 ))))+(1/2)ln (u+(√(1+(u^2 /(4a^2 )))) )  from here we obtain u in terms  of 𝛉 .  And v=(u^2 /(4a)) ,  𝛗 = tan^(−1) ((u/(2a)))    x_G =rsin θ−pcos (θ+φ)  y_G =rcos θ+psin (θ+φ)  locus of F :  x_F =rsin θ−pcos (θ+φ)−(v−a)sin (θ+φ)  y_F =rcos θ+usin (θ+φ)−(v−a)cos (θ+φ) .

$${T}\left({u},{v}\right)\:\:\:{u}={p} \\ $$$${v}=\frac{{u}^{\mathrm{2}} }{\mathrm{4}{a}}\:\:\:\:\Rightarrow\:\:\:\mathrm{tan}\:\phi=\frac{{u}}{\mathrm{2}{a}}\:\:{or}\:\frac{{p}}{\mathrm{2}{a}} \\ $$$${l}={ST}\:=\:{VT}\: \\ $$$${l}=\:\boldsymbol{{r}\theta}\:=\:\frac{\boldsymbol{{u}}}{\mathrm{4}\boldsymbol{{a}}}\sqrt{\mathrm{1}+\frac{\boldsymbol{{u}}^{\mathrm{2}} }{\mathrm{4}\boldsymbol{{a}}^{\mathrm{2}} }}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\boldsymbol{{u}}+\sqrt{\mathrm{1}+\frac{\boldsymbol{{u}}^{\mathrm{2}} }{\mathrm{4}\boldsymbol{{a}}^{\mathrm{2}} }}\:\right) \\ $$$${from}\:{here}\:{we}\:{obtain}\:\boldsymbol{{u}}\:{in}\:{terms} \\ $$$${of}\:\boldsymbol{\theta}\:.\:\:{And}\:\boldsymbol{{v}}=\frac{\boldsymbol{{u}}^{\mathrm{2}} }{\mathrm{4}\boldsymbol{{a}}}\:,\:\:\boldsymbol{\phi}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\boldsymbol{{u}}}{\mathrm{2}\boldsymbol{{a}}}\right) \\ $$$$ \\ $$$$\boldsymbol{{x}}_{\boldsymbol{{G}}} ={r}\mathrm{sin}\:\theta−{p}\mathrm{cos}\:\left(\theta+\phi\right) \\ $$$$\boldsymbol{{y}}_{\boldsymbol{{G}}} ={r}\mathrm{cos}\:\theta+{p}\mathrm{sin}\:\left(\theta+\phi\right) \\ $$$${locus}\:{of}\:{F}\:: \\ $$$$\boldsymbol{{x}}_{\boldsymbol{{F}}} ={r}\mathrm{sin}\:\theta−{p}\mathrm{cos}\:\left(\theta+\phi\right)−\left({v}−{a}\right)\mathrm{sin}\:\left(\theta+\phi\right) \\ $$$$\boldsymbol{{y}}_{\boldsymbol{{F}}} ={r}\mathrm{cos}\:\theta+{u}\mathrm{sin}\:\left(\theta+\phi\right)−\left({v}−{a}\right)\mathrm{cos}\:\left(\theta+\phi\right)\:. \\ $$

Commented by mrW2 last updated on 23/Feb/18

Commented by mrW2 last updated on 23/Feb/18

Commented by mrW2 last updated on 23/Feb/18

Commented by mrW2 last updated on 23/Feb/18

the pictures show an example with  r=4 and a=1

$${the}\:{pictures}\:{show}\:{an}\:{example}\:{with} \\ $$$${r}=\mathrm{4}\:{and}\:{a}=\mathrm{1} \\ $$

Commented by ajfour last updated on 23/Feb/18

Very good to see the images Sir.  Had pictured this only by the mind′s  eye.

$${Very}\:{good}\:{to}\:{see}\:{the}\:{images}\:{Sir}. \\ $$$${Had}\:{pictured}\:{this}\:{only}\:{by}\:{the}\:{mind}'{s} \\ $$$${eye}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com