Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 30377 by ajfour last updated on 21/Feb/18

Commented by ajfour last updated on 21/Feb/18

Given the ellipse touches parabola  only at vertex and lies within the  the red line and parabola.

$${Given}\:{the}\:{ellipse}\:{touches}\:{parabola} \\ $$$${only}\:{at}\:{vertex}\:{and}\:{lies}\:{within}\:{the} \\ $$$${the}\:{red}\:{line}\:{and}\:{parabola}. \\ $$

Answered by mrW2 last updated on 22/Feb/18

Eqn. of ellipse:  ((x/a))^2 +(((2y)/x_0 )−1)^2 =1    Intersection with parabola:  ((x_0 y)/a^2 )=1−(((2y)/x_0 )−1)^2 =((4y)/x_0 )(1−(y/x_0 ))  y[(x_0 /a^2 )−(4/x_0 )+((4y)/x_0 ^2 )]=0  ⇒y=0  ⇒(x_0 /a^2 )−(4/x_0 )+((4y)/x_0 ^2 )=0  ⇒y=x_0 −(x_0 ^3 /(4a^2 ))=x_0 (1−(x_0 ^2 /(4a^2 )))=^! 0  ⇒(2a)^2 =x_0 ^2   ⇒a=(x_0 /2)  i.e. the largest ellipse is a circle:  (((2x)/x_0 ))^2 +(((2y)/x_0 )−1)^2 =1  with radius (x_0 /2) and its area is ((πx_0 ^2 )/4).

$${Eqn}.\:{of}\:{ellipse}: \\ $$$$\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}{y}}{{x}_{\mathrm{0}} }−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$ \\ $$$${Intersection}\:{with}\:{parabola}: \\ $$$$\frac{{x}_{\mathrm{0}} {y}}{{a}^{\mathrm{2}} }=\mathrm{1}−\left(\frac{\mathrm{2}{y}}{{x}_{\mathrm{0}} }−\mathrm{1}\right)^{\mathrm{2}} =\frac{\mathrm{4}{y}}{{x}_{\mathrm{0}} }\left(\mathrm{1}−\frac{{y}}{{x}_{\mathrm{0}} }\right) \\ $$$${y}\left[\frac{{x}_{\mathrm{0}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{4}}{{x}_{\mathrm{0}} }+\frac{\mathrm{4}{y}}{{x}_{\mathrm{0}} ^{\mathrm{2}} }\right]=\mathrm{0} \\ $$$$\Rightarrow{y}=\mathrm{0} \\ $$$$\Rightarrow\frac{{x}_{\mathrm{0}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{4}}{{x}_{\mathrm{0}} }+\frac{\mathrm{4}{y}}{{x}_{\mathrm{0}} ^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow{y}={x}_{\mathrm{0}} −\frac{{x}_{\mathrm{0}} ^{\mathrm{3}} }{\mathrm{4}{a}^{\mathrm{2}} }={x}_{\mathrm{0}} \left(\mathrm{1}−\frac{{x}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }\right)\overset{!} {=}\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{2}{a}\right)^{\mathrm{2}} ={x}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$\Rightarrow{a}=\frac{{x}_{\mathrm{0}} }{\mathrm{2}} \\ $$$${i}.{e}.\:{the}\:{largest}\:{ellipse}\:{is}\:{a}\:{circle}: \\ $$$$\left(\frac{\mathrm{2}{x}}{{x}_{\mathrm{0}} }\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}{y}}{{x}_{\mathrm{0}} }−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${with}\:{radius}\:\frac{{x}_{\mathrm{0}} }{\mathrm{2}}\:{and}\:{its}\:{area}\:{is}\:\frac{\pi{x}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{4}}. \\ $$

Commented by ajfour last updated on 21/Feb/18

Good way Sir.

$${Good}\:{way}\:{Sir}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com