Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 30455 by ajfour last updated on 22/Feb/18

Commented by mrW2 last updated on 25/Feb/18

p=((ac(a^2 −b^2 +c^2 ))/(a(a^2 −b^2 +c^2 )+c(a^2 +b^2 −c^2 )))  q=((c^2 (a^2 +b^2 −c^2 ))/(a(a^2 −b^2 +c^2 )+c(a^2 +b^2 −c^2 )))  (p/q)=((a(a^2 −b^2 +c^2 ))/(c(a^2 +b^2 −c^2 )))  please confirm.

$${p}=\frac{{ac}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)}{{a}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+{c}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)} \\ $$$${q}=\frac{{c}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)}{{a}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+{c}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)} \\ $$$$\frac{{p}}{{q}}=\frac{{a}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)}{{c}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)} \\ $$$${please}\:{confirm}. \\ $$

Commented by ajfour last updated on 25/Feb/18

yes sir, with some effort i obtained  the same.

$${yes}\:{sir},\:{with}\:{some}\:{effort}\:{i}\:{obtained} \\ $$$${the}\:{same}. \\ $$

Commented by ajfour last updated on 25/Feb/18

Commented by ajfour last updated on 25/Feb/18

λa^� +μ(c^� −λa^� )=η(pc^� −a^� )+a^�   if BA is divided in the ratio  p/(1−p).  comparing coefficient of c^�  ,      ⇒  μ = ηp    ...(i)  further since ∠B is bisected,      μ = ((λa)/(c+λa))   ,   η = (a/(a+pc))  ..(ii)  and  𝛌 = ((ccos B)/a)    ....(iii)  from (i) and (ii):       p = (μ/η) = ((λ(a+pc))/(c+λa))  ⇒   p(c+λa)=λa+λcp        p=((λa)/(λa+c−λc))    now, using (iii)     p = ((ccos B)/(ccos B+c−((c^2 cos B)/a)))        = ((accos B)/(accos B+ac−c^2 cos B))    =(((a^2 +c^2 −b^2 ))/((a^2 +c^2 −b^2 )+2ac−(c/a)(a^2 +c^2 −b^2 )))  pc =((ac(a^2 +c^2 −b^2 ))/(a(a^2 +c^2 −b^2 )+c(a^2 +b^2 −c^2 )))  qc = c−pc  qc = ((c^2 (a^2 +b^2 −c^2 ))/(a(a^2 +c^2 −b^2 )+c(a^2 +b^2 −c^2 ))) .

$$\lambda\bar {{a}}+\mu\left(\bar {{c}}−\lambda\bar {{a}}\right)=\eta\left({p}\bar {{c}}−\bar {{a}}\right)+\bar {{a}} \\ $$$${if}\:{BA}\:{is}\:{divided}\:{in}\:{the}\:{ratio} \\ $$$${p}/\left(\mathrm{1}−{p}\right). \\ $$$${comparing}\:{coefficient}\:{of}\:\bar {{c}}\:, \\ $$$$\:\:\:\:\Rightarrow\:\:\mu\:=\:\eta{p}\:\:\:\:...\left({i}\right) \\ $$$${further}\:{since}\:\angle{B}\:{is}\:{bisected}, \\ $$$$\:\:\:\:\mu\:=\:\frac{\lambda{a}}{{c}+\lambda{a}}\:\:\:,\:\:\:\eta\:=\:\frac{{a}}{{a}+{pc}}\:\:..\left({ii}\right) \\ $$$${and}\:\:\boldsymbol{\lambda}\:=\:\frac{\boldsymbol{{c}}\mathrm{cos}\:\boldsymbol{{B}}}{\boldsymbol{{a}}}\:\:\:\:....\left({iii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right): \\ $$$$\:\:\:\:\:{p}\:=\:\frac{\mu}{\eta}\:=\:\frac{\lambda\left({a}+{pc}\right)}{{c}+\lambda{a}} \\ $$$$\Rightarrow\:\:\:{p}\left({c}+\lambda{a}\right)=\lambda{a}+\lambda{cp} \\ $$$$\:\:\:\:\:\:{p}=\frac{\lambda{a}}{\lambda{a}+{c}−\lambda{c}}\:\:\:\:{now},\:{using}\:\left({iii}\right) \\ $$$$\:\:\:\boldsymbol{{p}}\:=\:\frac{\boldsymbol{{c}}\mathrm{cos}\:\boldsymbol{{B}}}{\boldsymbol{{c}}\mathrm{cos}\:\boldsymbol{{B}}+\boldsymbol{{c}}−\frac{\boldsymbol{{c}}^{\mathrm{2}} \mathrm{cos}\:\boldsymbol{{B}}}{\boldsymbol{{a}}}} \\ $$$$\:\:\:\:\:\:=\:\frac{\boldsymbol{{ac}}\mathrm{cos}\:\boldsymbol{{B}}}{\boldsymbol{{ac}}\mathrm{cos}\:\boldsymbol{{B}}+\boldsymbol{{ac}}−\boldsymbol{{c}}^{\mathrm{2}} \mathrm{cos}\:\boldsymbol{{B}}} \\ $$$$\:\:=\frac{\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}{\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)+\mathrm{2}{ac}−\frac{{c}}{{a}}\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)} \\ $$$${pc}\:=\frac{{ac}\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}{{a}\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)+{c}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)} \\ $$$${qc}\:=\:{c}−{pc} \\ $$$${qc}\:=\:\frac{{c}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)}{{a}\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)+{c}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)}\:. \\ $$

Commented by mrW2 last updated on 25/Feb/18

GREAT !

$$\mathbb{GREAT}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com