All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 30456 by daffa123 last updated on 22/Feb/18
proofthata2(a−b)(a−c)+b2(b−c)(b−a)+c2(c−a)(c−b)=a+b+c
Answered by Rasheed.Sindhi last updated on 22/Feb/18
a2(a−b)(a−c)+b2(b−c)(b−a)+c2(c−a)(c−b)=a+b+cLHS−a2(b−c)−b2(c−a)−c2(a−b)(a−b)(b−c)(c−a)=−a2b−ab2+b2c−a2c−bc2+ac2(a−b)(b−c)(c−a)=−ab(a−b)+c(b2−a2)−c2(b−a)(a−b)(b−c)(c−a)=−ab(a−b)−c(a2−b2)+c2(a−b)(a−b)(b−c)(c−a)=−(a−b){ab−c(a+b)+c2}(a−b)(b−c)(c−a)=−(a−b){ab−ac−bc+c2}(a−b)(b−c)(c−a)=−a(b−c)−c(b−c)(b−c)(c−a)=−(b−c)(a−c)(b−c)(c−a)=(b−c)(c−a)(b−c)(c−a)=1≠a+b+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com