Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 30521 by abdo imad last updated on 22/Feb/18

1) find  ∫_0 ^1  ((√(1+x^2 )))^n  cos(narctanx)dx  2)find  ∫_0 ^1 ((√(1+x^2  )))^3  cos(3 arctanx)dx .

$$\left.\mathrm{1}\right)\:{find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{{n}} \:{cos}\left({narctanx}\right){dx} \\ $$$$\left.\mathrm{2}\right){find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}\right)^{\mathrm{3}} \:{cos}\left(\mathrm{3}\:{arctanx}\right){dx}\:. \\ $$

Commented by abdo imad last updated on 24/Feb/18

1)let consider the polynomial t(x)=(1+ix)^n  +(1−ix)^n   t(x)= 2Re(1+ix)^n = 2((√(1+x^2 )) )^n cos(narctanx)⇒  ∫_0 ^1  ((√(1+x^2 )) )^n cos(narctanx)dx=(1/2)∫_0 ^1  t(x)dx from another  side t(x)= Σ_(k=0) ^n  C_n ^k  (ix)^k  +Σ_(k=0) ^n  C_n ^k (−ix)^k   = Σ_(k=0) ^n  C_n ^k ((i)^k  +(−i)^k )x^k   =2Σ_(p=0) ^([(n/2)])   C_n ^(2p) (−1)^p  x^(2p)  ⇒  (1/2)∫_0 ^1 t(x)dx= Σ_(p=0) ^([(n/2)])   C_n ^(2p)  (−1)^(p )  ∫_0 ^1  x^(2p) dx  = Σ_(p=0) ^([(n/2)])  (−1)^p   (C_n ^(2p) /(2p+1)) .  2)forn=3 we find   ∫_0 ^1  ((√(1+x^2  ))) )^3  cos(3arctanx)dx=Σ_(p=0) ^1 (−1)^p   (C_3 ^(2p) /(2p+1))  =C_3 ^0  −(C_3 ^2 /3)=1−(1/3) =(2/3) .

$$\left.\mathrm{1}\right){let}\:{consider}\:{the}\:{polynomial}\:{t}\left({x}\right)=\left(\mathrm{1}+{ix}\right)^{{n}} \:+\left(\mathrm{1}−{ix}\right)^{{n}} \\ $$$${t}\left({x}\right)=\:\mathrm{2}{Re}\left(\mathrm{1}+{ix}\right)^{{n}} =\:\mathrm{2}\left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\right)^{{n}} {cos}\left({narctanx}\right)\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\right)^{{n}} {cos}\left({narctanx}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}\left({x}\right){dx}\:{from}\:{another} \\ $$$${side}\:{t}\left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left({ix}\right)^{{k}} \:+\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \left(−{ix}\right)^{{k}} \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \left(\left({i}\right)^{{k}} \:+\left(−{i}\right)^{{k}} \right){x}^{{k}} \:\:=\mathrm{2}\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\:{C}_{{n}} ^{\mathrm{2}{p}} \left(−\mathrm{1}\right)^{{p}} \:{x}^{\mathrm{2}{p}} \:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {t}\left({x}\right){dx}=\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\:{C}_{{n}} ^{\mathrm{2}{p}} \:\left(−\mathrm{1}\right)^{{p}\:} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}{p}} {dx} \\ $$$$=\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\left(−\mathrm{1}\right)^{{p}} \:\:\frac{{C}_{{n}} ^{\mathrm{2}{p}} }{\mathrm{2}{p}+\mathrm{1}}\:. \\ $$$$\left.\mathrm{2}\right){forn}=\mathrm{3}\:{we}\:{find}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sqrt{\left.\mathrm{1}+{x}^{\mathrm{2}} \:\right)}\:\right)^{\mathrm{3}} \:{cos}\left(\mathrm{3}{arctanx}\right){dx}=\sum_{{p}=\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{{p}} \:\:\frac{{C}_{\mathrm{3}} ^{\mathrm{2}{p}} }{\mathrm{2}{p}+\mathrm{1}} \\ $$$$={C}_{\mathrm{3}} ^{\mathrm{0}} \:−\frac{{C}_{\mathrm{3}} ^{\mathrm{2}} }{\mathrm{3}}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\:=\frac{\mathrm{2}}{\mathrm{3}}\:. \\ $$

Commented by abdo imad last updated on 24/Feb/18

C_3 ^0  −(C_3 ^2 /3)=1−(3/3)=0

$${C}_{\mathrm{3}} ^{\mathrm{0}} \:−\frac{{C}_{\mathrm{3}} ^{\mathrm{2}} }{\mathrm{3}}=\mathrm{1}−\frac{\mathrm{3}}{\mathrm{3}}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com