Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 30522 by abdo imad last updated on 22/Feb/18

let p(x)= (1+ix)^n  −(1−ix)^n   1) find the roots of p(x) and factorize p(x)  ) give p(x) at form of arcs.

letp(x)=(1+ix)n(1ix)n1)findtherootsofp(x)andfactorizep(x))givep(x)atformofarcs.

Commented by abdo imad last updated on 24/Feb/18

1) we have p(x)=2i Im(1+ix)^n  but ∣1+ix∣=(√(1+x^2 ))  ⇒1+ix =(√(1+x^2 )) ( (1/(√(1+x^2 ))) +i (x/(√(1+x^2 ))))=r e^(iθ)  ⇒r=(√(1+x^2 ))  and cosθ =(1/(√(1+x^2 ))) and sinθ = (x/(√(1+x^2 ))) ⇒tanθ=x   ⇒θ= artanx ⇒(1+ix)^n =((√(1+x^2 )))^n  e^(inarctanx)  ⇒  p(x)= 2i((√(1+x^2 )) )^n  sin(narctanx)  p(x)=0 ⇔ narctanx=kπ ⇔arctanx=((kπ)/n) ⇔ x_k =tan(((kπ)/n))  and  k∈[[0,n−1]] and p(x)=λ Π_(k=0) ^(n−1)  (x−tan(((kπ)/n)))let  find λ we have p(x)= Σ_(k=0) ^n  C_n ^k  (ix)^k  −Σ_(k=0) ^n  C_n ^k (−ix)^k   =Σ_(k=0) ^n  C_n ^k  ((i)^k  −(−i)^k )x^k   =2i Σ_(p=0) ^([((n−1)/2)])   C_n ^(2p+1)  x^(2p+1)   ⇒λ= 2i C_n ^(2[((n−1)/2)]+1)  ⇒  p(x)= 2i C_n ^(2[((n−1)/2)]+1)   Π_(k=0) ^(n−1)  (x−tan(((kπ)/n))) .  2) p(x)=2i ((√(1+x^2 )) )^n  sin(narctanx).

1)wehavep(x)=2iIm(1+ix)nbut1+ix∣=1+x21+ix=1+x2(11+x2+ix1+x2)=reiθr=1+x2andcosθ=11+x2andsinθ=x1+x2tanθ=xθ=artanx(1+ix)n=(1+x2)neinarctanxp(x)=2i(1+x2)nsin(narctanx)p(x)=0narctanx=kπarctanx=kπnxk=tan(kπn)andk[[0,n1]]andp(x)=λk=0n1(xtan(kπn))letfindλwehavep(x)=k=0nCnk(ix)kk=0nCnk(ix)k=k=0nCnk((i)k(i)k)xk=2ip=0[n12]Cn2p+1x2p+1λ=2iCn2[n12]+1p(x)=2iCn2[n12]+1k=0n1(xtan(kπn)).2)p(x)=2i(1+x2)nsin(narctanx).

Answered by sma3l2996 last updated on 23/Feb/18

p(x)=(√((1+x^2 )^n ))(e^(inθ) −e^(−inθ) )  \θ=tan^(−1) x  =(√((1+x^2 )^n ))(2isin(nθ))  p(x)=2i(√((1+x^2 )^n ))sin(ntan^(−1) (x))  tan^(−1) (x_k )=((kπ)/n)  ⇒x_k =tan(((kπ)/n))  so  roots of p(x) are α_k =tan(((kπ)/n))  \k=(0,1,2,3,...,n−1)  p(x)=2i(√((1+x^2 )^n ))Π_(k=0) ^(n−1) (x−tan(((kπ)/n)))

p(x)=(1+x2)n(einθeinθ)θ=tan1x=(1+x2)n(2isin(nθ))p(x)=2i(1+x2)nsin(ntan1(x))tan1(xk)=kπnxk=tan(kπn)sorootsofp(x)areαk=tan(kπn)k=(0,1,2,3,...,n1)p(x)=2i(1+x2)nk=0n1(xtan(kπn))

Commented by abdo imad last updated on 24/Feb/18

you have commited a error in leading coefficient of p(x)  sir.

youhavecommitedaerrorinleadingcoefficientofp(x)sir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com