Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 30524 by abdo imad last updated on 22/Feb/18

let w_n = Σ_(k=2) ^n     (1/(k^2 −1))  find lim_(n→∞)  w_n  .

letwn=k=2n1k21findlimnwn.

Commented by abdo imad last updated on 23/Feb/18

the serie w_n is positif how to find a negatif value sir?...

theseriewnispositifhowtofindanegatifvaluesir?...

Commented by abdo imad last updated on 24/Feb/18

we have w_n = Σ_(k=2) ^n  (1/(k^2 −1))=(1/2)Σ_(k=2) ^n ((1/(k−1)) −(1/(k+1)))  = (1/2) Σ_(k=2) ^n  (1/(k−1)) −(1/2)Σ_(k=2) ^n  (1/(k+1))  =(1/2)Σ_(k=1) ^(n−1)  (1/k) −(1/2) Σ_(k=3) ^(n+1)  (1/k) but we have  Σ_(k=1) ^(n−1)   (1/k)=H_(n−1)  and Σ_(k=3) ^(n+1)  (1/k)=H_(n+1)  −(3/2) ⇒  w_n =(1/2)H_(n−1)  −(1/2) H_(n+1)  +(3/4)=(1/2)(H_(n−1)  −H_(n+1) ) +(3/4)  H_(n−1) =ln(n−1) +γ +o((1/n))  H_(n+1)  =ln(n+1) +γ +o((1/n)) ⇒H_(n−1)  −H_(n+1) =ln(((n−1)/(n+1))) +o((1/n))  ⇒lim_(n→∞)  H_(n−1)  −H_(n+1) =0 ⇒lim_(n→∞) w_n =(3/4) .

wehavewn=k=2n1k21=12k=2n(1k11k+1)=12k=2n1k112k=2n1k+1=12k=1n11k12k=3n+11kbutwehavek=1n11k=Hn1andk=3n+11k=Hn+132wn=12Hn112Hn+1+34=12(Hn1Hn+1)+34Hn1=ln(n1)+γ+o(1n)Hn+1=ln(n+1)+γ+o(1n)Hn1Hn+1=ln(n1n+1)+o(1n)limnHn1Hn+1=0limnwn=34.

Answered by sma3l2996 last updated on 23/Feb/18

w_n =Σ_(k=2) ^n (1/(k^2 −1))=Σ_(k=2) ^n (1/((k−1)(k+1)))  we have (1/((k+1)(k−1)))=(1/2)((1/(k−1))−(1/(k+1)))  so  w_n =(1/2)(Σ_(k=2) ^n (1/(k−1))−Σ_(k=2) ^n (1/(k+1)))  i=k−1 ; j=k+1  w_n =(1/2)(Σ_(i=1) ^(n−1) (1/i)−Σ_(j=3) ^(n+1) (1/j))  w_n =(1/2)(Σ_(i=1) ^(n−1) (1/i)−(Σ_(j=1) ^(n−1) (1/j)+(1/n)+(1/(n+1))−1−(1/2)))  w_n =(1/2)(Σ_(i=1) ^(n−1) (1/i)−Σ_(j=1) ^(n−1) (1/j)+((2n+1)/(n(n+1)))−(3/2))  w_n =(1/2)(((2n+1)/(n(n+1)))−(3/2))  so  lim_(n→∞) w_n =lim_(n→∞) ((2n)/(2n^2 ))−(3/4)=−(3/4)

wn=nk=21k21=nk=21(k1)(k+1)wehave1(k+1)(k1)=12(1k11k+1)sown=12(nk=21k1nk=21k+1)i=k1;j=k+1wn=12(n1i=11in+1j=31j)wn=12(n1i=11i(n1j=11j+1n+1n+1112))wn=12(n1i=11in1j=11j+2n+1n(n+1)32)wn=12(2n+1n(n+1)32)Double subscripts: use braces to clarify

Commented by sma3l2996 last updated on 24/Feb/18

w_n =(1/2)(Σ_(i=1) ^(n−1) (1/i)−(Σ_(j=1) ^(n−1) (1/j)+((2n+1)/(n(n+1)))−(3/2)))  =(1/2)(Σ_(i=1) ^(n−1) (1/i)−Σ_(j=1) ^(n−1) −((2n+1)/(n(n+1)))+(3/2))  w_n =(1/2)((3/2)−((2n+1)/(n(n+1))))  so lim_(n→∞) w_n =(1/2)((3/2)−lim_(n→∞) ((2n)/n^2 ))=(3/4)

wn=12(n1i=11i(n1j=11j+2n+1n(n+1)32))=12(n1i=11in1j=12n+1n(n+1)+32)wn=12(322n+1n(n+1))Double subscripts: use braces to clarify

Commented by sma3l2996 last updated on 24/Feb/18

I did mistake on line 7

Ididmistakeonline7

Commented by prof Abdo imad last updated on 24/Feb/18

nevermind sir...

nevermindsir...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com