Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 30527 by abdo imad last updated on 22/Feb/18

find  I_(n,p) = ∫_0 ^∞   x^n  e^(−px)      with n and p from N^★  .

$${find}\:\:{I}_{{n},{p}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{x}^{{n}} \:{e}^{−{px}} \:\:\:\:\:{with}\:{n}\:{and}\:{p}\:{from}\:{N}^{\bigstar} \:. \\ $$

Answered by sma3l2996 last updated on 23/Feb/18

I=∫_0 ^∞ x^n e^(−px) dx  u=x^n ⇒u′=nx^(n−1)   v′=e^(−px) ⇒v=((−1)/p)e^(−px)   I=−(1/p)[x^n e^(−px) ]_0 ^∞ +(n/p)∫_0 ^∞ x^(n−1) e^(−px) dx  (lim_(x→∞) x^n e^(−px) =0)  =(n/p)∫_0 ^∞ x^(n−1) e^(−px) dx  u=x^(n−1) ⇒u′=(n−1)x^(n−2)   v′=e^(−px) ⇒v=((−1)/p)e^(−px)   I=((n(n−1))/p^2 )∫_0 ^∞ x^(n−2) e^(−px) dx  .  .  .  k times  I=((n(n−1)(n−2)...(n−k+1))/p^k )∫_0 ^∞ x^(n−k) e^(−px) dx  .  .  .  n times  I=((n(n−1)(n−2)...(n−n+1))/p^n )∫_0 ^∞ e^(−px) dx  I=((n!)/p^n )[−(1/p)e^(−px) ]_0 ^∞ =((n!)/p^(n+1) )(−(lim_(x→∞) e^(−px) −e^0 ))  I=((n!)/p^(n+1) )

$${I}=\int_{\mathrm{0}} ^{\infty} {x}^{{n}} {e}^{−{px}} {dx} \\ $$$${u}={x}^{{n}} \Rightarrow{u}'={nx}^{{n}−\mathrm{1}} \\ $$$${v}'={e}^{−{px}} \Rightarrow{v}=\frac{−\mathrm{1}}{{p}}{e}^{−{px}} \\ $$$${I}=−\frac{\mathrm{1}}{{p}}\left[{x}^{{n}} {e}^{−{px}} \right]_{\mathrm{0}} ^{\infty} +\frac{{n}}{{p}}\int_{\mathrm{0}} ^{\infty} {x}^{{n}−\mathrm{1}} {e}^{−{px}} {dx}\:\:\left(\underset{{x}\rightarrow\infty} {{lim}x}^{{n}} {e}^{−{px}} =\mathrm{0}\right) \\ $$$$=\frac{{n}}{{p}}\int_{\mathrm{0}} ^{\infty} {x}^{{n}−\mathrm{1}} {e}^{−{px}} {dx} \\ $$$${u}={x}^{{n}−\mathrm{1}} \Rightarrow{u}'=\left({n}−\mathrm{1}\right){x}^{{n}−\mathrm{2}} \\ $$$${v}'={e}^{−{px}} \Rightarrow{v}=\frac{−\mathrm{1}}{{p}}{e}^{−{px}} \\ $$$${I}=\frac{{n}\left({n}−\mathrm{1}\right)}{{p}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} {x}^{{n}−\mathrm{2}} {e}^{−{px}} {dx} \\ $$$$. \\ $$$$. \\ $$$$. \\ $$$${k}\:{times} \\ $$$${I}=\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)...\left({n}−{k}+\mathrm{1}\right)}{{p}^{{k}} }\int_{\mathrm{0}} ^{\infty} {x}^{{n}−{k}} {e}^{−{px}} {dx} \\ $$$$. \\ $$$$. \\ $$$$. \\ $$$${n}\:{times} \\ $$$${I}=\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)...\left({n}−{n}+\mathrm{1}\right)}{{p}^{{n}} }\int_{\mathrm{0}} ^{\infty} {e}^{−{px}} {dx} \\ $$$${I}=\frac{{n}!}{{p}^{{n}} }\left[−\frac{\mathrm{1}}{{p}}{e}^{−{px}} \right]_{\mathrm{0}} ^{\infty} =\frac{{n}!}{{p}^{{n}+\mathrm{1}} }\left(−\left(\underset{{x}\rightarrow\infty} {{lim}e}^{−{px}} −{e}^{\mathrm{0}} \right)\right) \\ $$$${I}=\frac{{n}!}{{p}^{{n}+\mathrm{1}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com