Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 30543 by mondodotto@gmail.com last updated on 23/Feb/18

Commented by abdo imad last updated on 23/Feb/18

the ch.x−(1/2)=sint give  I= ∫_(−(π/2)) ^(π/2)  4π((1/2) +sint)(√(1−sin^2 t)) cost dt  I= ∫_(−(π/2)) ^(π/2) 4π((1/2) +sint)cos^2 tdt =2π ∫_(−(π/2)) ^(π/2)  cos^2 t dt  +4π ∫_(−(π/2)) ^(π/2)  sint cos^2 t dt but the functiont→sintcos^2 t is odd  ⇒∫_(−(π/2)) ^(π/2) sint cos^2 tdt=0 ⇒ I= 4π ∫_0 ^(π/2)  (((1+cos(2t))/2))dt  I=2π ∫_0 ^(π/2)   dt +2π ∫_0 ^(π/2)   cos(2t)dt= π^2   +2π[ (1/2)sin(2t)]_0 ^(π/2)   = π^2  +0 ⇒ I=π^2   .

thech.x12=sintgiveI=π2π24π(12+sint)1sin2tcostdtI=π2π24π(12+sint)cos2tdt=2ππ2π2cos2tdt+4ππ2π2sintcos2tdtbutthefunctiontsintcos2tisoddπ2π2sintcos2tdt=0I=4π0π2(1+cos(2t)2)dtI=2π0π2dt+2π0π2cos(2t)dt=π2+2π[12sin(2t)]0π2=π2+0I=π2.

Answered by ajfour last updated on 23/Feb/18

I= 4π∫_(−1/2) ^(  3/2) (1−x)(√(1−((1/2)−x)^2 )) dx  ⇒ 2I =4π∫_(−1/2) ^(  3/2) (√(1−(x−(1/2))^2 )) dx  I=2π[(1/2)(x−(1/2))(√(1−(x−(1/2))^2 )) +                        (1/2)sin^(−1) (x−(1/2))]∣_(−1/2) ^(3/2)   I=2π×(1/2)[sin^(−1) 1−sin^(−1) (−1)]  ⇒   I = 𝛑^2   .

I=4π1/23/2(1x)1(12x)2dx2I=4π1/23/21(x12)2dxI=2π[12(x12)1(x12)2+12sin1(x12)]1/23/2I=2π×12[sin11sin1(1)]I=π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com