All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 30543 by mondodotto@gmail.com last updated on 23/Feb/18
Commented by abdo imad last updated on 23/Feb/18
thech.x−12=sintgiveI=∫−π2π24π(12+sint)1−sin2tcostdtI=∫−π2π24π(12+sint)cos2tdt=2π∫−π2π2cos2tdt+4π∫−π2π2sintcos2tdtbutthefunctiont→sintcos2tisodd⇒∫−π2π2sintcos2tdt=0⇒I=4π∫0π2(1+cos(2t)2)dtI=2π∫0π2dt+2π∫0π2cos(2t)dt=π2+2π[12sin(2t)]0π2=π2+0⇒I=π2.
Answered by ajfour last updated on 23/Feb/18
I=4π∫−1/23/2(1−x)1−(12−x)2dx⇒2I=4π∫−1/23/21−(x−12)2dxI=2π[12(x−12)1−(x−12)2+12sin−1(x−12)]∣−1/23/2I=2π×12[sin−11−sin−1(−1)]⇒I=π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com