Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 30580 by abdo imad last updated on 23/Feb/18

decompose inside C[x] F= (x^n /(x^m  +1)) with m≥n+2  then find ∫_0 ^∞   (x^n /(x^m  +1))dx.

$${decompose}\:{inside}\:{C}\left[{x}\right]\:{F}=\:\frac{{x}^{{n}} }{{x}^{{m}} \:+\mathrm{1}}\:{with}\:{m}\geqslant{n}+\mathrm{2} \\ $$$${then}\:{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} }{{x}^{{m}} \:+\mathrm{1}}{dx}. \\ $$

Commented by prof Abdo imad last updated on 24/Feb/18

z^m  +1=0⇔z^m =e^(i(2k+1)π)  so the roots of this  equation are  z_k = e^(i(2k+1)(π/(m )))   /k∈[[0,m−1]]⇒  F(x)= Σ_(k=0) ^(m−1)   (λ_k /(x−z_k ))  we have λ_k =  (z_k ^n /(m z_k ^(m−1) )) ⇒  λ_k = −(1/m) z_k ^(n+1)  ⇒F(x)= −(1/m)Σ_(k=0) ^(m−1)   (z_k ^(n+1) /(x−z_k ))  .  2) the ch. x^m =t give  ∫_0 ^∞    (x^n /(x^m +1))dx = ∫_0 ^∞     (t^(n/m) /(1+t))  (1/m)t^((1/m)−1) dt  =∫_0 ^∞    (1/m)  (t^(((n+1)/m)−1) /(1+t))dt = (1/m) (π/(sin(π((n+1)/m)))) we have  used the result ∫_0 ^∞    (t^(a−1) /(1+t))dt= (π/(sin(πa)))  if 0<a<1.

$${z}^{{m}} \:+\mathrm{1}=\mathrm{0}\Leftrightarrow{z}^{{m}} ={e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\pi} \:{so}\:{the}\:{roots}\:{of}\:{this} \\ $$$${equation}\:{are}\:\:{z}_{{k}} =\:{e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{{m}\:}} \:\:/{k}\in\left[\left[\mathrm{0},{m}−\mathrm{1}\right]\right]\Rightarrow \\ $$$${F}\left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{m}−\mathrm{1}} \:\:\frac{\lambda_{{k}} }{{x}−{z}_{{k}} }\:\:{we}\:{have}\:\lambda_{{k}} =\:\:\frac{{z}_{{k}} ^{{n}} }{{m}\:{z}_{{k}} ^{{m}−\mathrm{1}} }\:\Rightarrow \\ $$$$\lambda_{{k}} =\:−\frac{\mathrm{1}}{{m}}\:{z}_{{k}} ^{{n}+\mathrm{1}} \:\Rightarrow{F}\left({x}\right)=\:−\frac{\mathrm{1}}{{m}}\sum_{{k}=\mathrm{0}} ^{{m}−\mathrm{1}} \:\:\frac{{z}_{{k}} ^{{n}+\mathrm{1}} }{{x}−{z}_{{k}} }\:\:. \\ $$$$\left.\mathrm{2}\right)\:{the}\:{ch}.\:{x}^{{m}} ={t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{{n}} }{{x}^{{m}} +\mathrm{1}}{dx}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}^{\frac{{n}}{{m}}} }{\mathrm{1}+{t}}\:\:\frac{\mathrm{1}}{{m}}{t}^{\frac{\mathrm{1}}{{m}}−\mathrm{1}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{m}}\:\:\frac{{t}^{\frac{{n}+\mathrm{1}}{{m}}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:=\:\frac{\mathrm{1}}{{m}}\:\frac{\pi}{{sin}\left(\pi\frac{{n}+\mathrm{1}}{{m}}\right)}\:{we}\:{have} \\ $$$${used}\:{the}\:{result}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}=\:\frac{\pi}{{sin}\left(\pi{a}\right)}\:\:{if}\:\mathrm{0}<{a}<\mathrm{1}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com