All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 30580 by abdo imad last updated on 23/Feb/18
decomposeinsideC[x]F=xnxm+1withm⩾n+2thenfind∫0∞xnxm+1dx.
Commented by prof Abdo imad last updated on 24/Feb/18
zm+1=0⇔zm=ei(2k+1)πsotherootsofthisequationarezk=ei(2k+1)πm/k∈[[0,m−1]]⇒F(x)=∑k=0m−1λkx−zkwehaveλk=zknmzkm−1⇒λk=−1mzkn+1⇒F(x)=−1m∑k=0m−1zkn+1x−zk.2)thech.xm=tgive∫0∞xnxm+1dx=∫0∞tnm1+t1mt1m−1dt=∫0∞1mtn+1m−11+tdt=1mπsin(πn+1m)wehaveusedtheresult∫0∞ta−11+tdt=πsin(πa)if0<a<1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com