Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 30598 by abdo imad last updated on 23/Feb/18

prove that it exist one polynomial p/  p(cosx)=cos(nx) find the roots of p(x) .

$${prove}\:{that}\:{it}\:{exist}\:{one}\:{polynomial}\:{p}/ \\ $$$${p}\left({cosx}\right)={cos}\left({nx}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:. \\ $$

Commented by abdo imad last updated on 27/Feb/18

we have by moivre formula   cos(nx) +isin(nx)=(cosx +isinx)^n   = Σ_(k=0) ^n   C_n ^k  (isinx)^k  (cosx)^(n−k)   = Σ_(p=0) ^([(n/2)])   C_n ^(2p)  (isinx)^(2p)  (cosx)^(n−2p)  +Σ_(p=0) ^([((n−1)/2)]) = C_n ^(2p+1) (isinx)^(2p+1) (cosx)^(n−2p−1)   cos(nx)=Re(e^(inx) )= Σ_(p=0) ^([(n/2)])   (−1)^p  C_n ^(2p)  (1−cos^2 x)^p (cosx)^(n−2p)   =p(cosx) /p(x)= Σ_(p=0) ^([(n/2)])  (−1)^p  C_n ^(2p)  (1−x^2 )^p  x^(n−2p)  .  2) X root of p (x)⇔ p(X)=0  let put X=cosθ  p(X)=0 ⇔p(cosθ)=0 ⇔cos(nθ)=0  ⇔  nθ= (π/2) +kπ  ⇔ θ=(π/(2n)) +((kπ)/n)=(((2k+1)π)/(2n)) but wecan chow  that deg p=n ⇒ the roits of p(x) are  X_k = cos(θ_k ) =cos((2k+1)(π/(2n))) with k∈[[0,n−1]].

$${we}\:{have}\:{by}\:{moivre}\:{formula}\: \\ $$$${cos}\left({nx}\right)\:+{isin}\left({nx}\right)=\left({cosx}\:+{isinx}\right)^{{n}} \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\left({isinx}\right)^{{k}} \:\left({cosx}\right)^{{n}−{k}} \\ $$$$=\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\:{C}_{{n}} ^{\mathrm{2}{p}} \:\left({isinx}\right)^{\mathrm{2}{p}} \:\left({cosx}\right)^{{n}−\mathrm{2}{p}} \:+\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} =\:{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} \left({isinx}\right)^{\mathrm{2}{p}+\mathrm{1}} \left({cosx}\right)^{{n}−\mathrm{2}{p}−\mathrm{1}} \\ $$$${cos}\left({nx}\right)={Re}\left({e}^{{inx}} \right)=\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\:\left(−\mathrm{1}\right)^{{p}} \:{C}_{{n}} ^{\mathrm{2}{p}} \:\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right)^{{p}} \left({cosx}\right)^{{n}−\mathrm{2}{p}} \\ $$$$={p}\left({cosx}\right)\:/{p}\left({x}\right)=\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\left(−\mathrm{1}\right)^{{p}} \:{C}_{{n}} ^{\mathrm{2}{p}} \:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{p}} \:{x}^{{n}−\mathrm{2}{p}} \:. \\ $$$$\left.\mathrm{2}\right)\:{X}\:{root}\:{of}\:{p}\:\left({x}\right)\Leftrightarrow\:{p}\left({X}\right)=\mathrm{0}\:\:{let}\:{put}\:{X}={cos}\theta \\ $$$${p}\left({X}\right)=\mathrm{0}\:\Leftrightarrow{p}\left({cos}\theta\right)=\mathrm{0}\:\Leftrightarrow{cos}\left({n}\theta\right)=\mathrm{0} \\ $$$$\Leftrightarrow\:\:{n}\theta=\:\frac{\pi}{\mathrm{2}}\:+{k}\pi\:\:\Leftrightarrow\:\theta=\frac{\pi}{\mathrm{2}{n}}\:+\frac{{k}\pi}{{n}}=\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{2}{n}}\:{but}\:{wecan}\:{chow} \\ $$$${that}\:{deg}\:{p}={n}\:\Rightarrow\:{the}\:{roits}\:{of}\:{p}\left({x}\right)\:{are} \\ $$$${X}_{{k}} =\:{cos}\left(\theta_{{k}} \right)\:={cos}\left(\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\right)\:{with}\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com