All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 30598 by abdo imad last updated on 23/Feb/18
provethatitexistonepolynomialp/p(cosx)=cos(nx)findtherootsofp(x).
Commented by abdo imad last updated on 27/Feb/18
wehavebymoivreformulacos(nx)+isin(nx)=(cosx+isinx)n=∑k=0nCnk(isinx)k(cosx)n−k=∑p=0[n2]Cn2p(isinx)2p(cosx)n−2p+∑p=0[n−12]=Cn2p+1(isinx)2p+1(cosx)n−2p−1cos(nx)=Re(einx)=∑p=0[n2](−1)pCn2p(1−cos2x)p(cosx)n−2p=p(cosx)/p(x)=∑p=0[n2](−1)pCn2p(1−x2)pxn−2p.2)Xrootofp(x)⇔p(X)=0letputX=cosθp(X)=0⇔p(cosθ)=0⇔cos(nθ)=0⇔nθ=π2+kπ⇔θ=π2n+kπn=(2k+1)π2nbutwecanchowthatdegp=n⇒theroitsofp(x)areXk=cos(θk)=cos((2k+1)π2n)withk∈[[0,n−1]].
Terms of Service
Privacy Policy
Contact: info@tinkutara.com