Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 30599 by abdo imad last updated on 23/Feb/18

decompose inside C(x)  F= (1/((x−1)(x^n  −1))) .

$${decompose}\:{inside}\:{C}\left({x}\right)\:\:{F}=\:\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}^{{n}} \:−\mathrm{1}\right)}\:. \\ $$

Commented by abdo imad last updated on 25/Feb/18

the roots of z^n  −1=0 are the complex z_k = e^(i((2kπ)/k))   with  k∈[[0,n−1]] ⇒F will be decomposed inside C(x) at  form F(x)= (a/(x−1)) +(b/((x−1)^2 )) +Σ_(k=1) ^(n−1)   (λ_k /(x−z_k )) we have  (x−1)(x^n  −1)=x^(n+1) −x −x^n  +1 ⇒  (d/dx)( (x−1)(x^n −1))=(n+1)x^n  −nx^(n−1)  −1⇒  λ_k =  (1/((n+1)z_k ^n  −n z_k ^(n−1)  −1)) =(1/(n+1−(n/z_k )−1))= (z_k /(nz_k −n))  the ch.x−1=y give F(x)= (1/((x−1)^2 (1+x +x^2  +...+x^(n−1) )))  =g(y)= (1/(y^2 (1+(1+y) +(1+y)^2  +....(1+y)^(n−1) ))) after  divide 1 per 2+y +(1+y)^2  +...(1+y)^(n−1)  folowing the  increasing powers after all calculus we find  a=((1−n)/(2n)) and b= (1/n) look also that  b=lim_(x→1) (x−1)^2 F(x)=lim_(x→1)   (1/(1+x +x^2  +...+x^(n−1) )) =(1/n)

$${the}\:{roots}\:{of}\:{z}^{{n}} \:−\mathrm{1}=\mathrm{0}\:{are}\:{the}\:{complex}\:{z}_{{k}} =\:{e}^{{i}\frac{\mathrm{2}{k}\pi}{{k}}} \:\:{with} \\ $$$${k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]\:\Rightarrow{F}\:{will}\:{be}\:{decomposed}\:{inside}\:{C}\left({x}\right)\:{at} \\ $$$${form}\:{F}\left({x}\right)=\:\frac{{a}}{{x}−\mathrm{1}}\:+\frac{{b}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:+\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\:\frac{\lambda_{{k}} }{{x}−{z}_{{k}} }\:{we}\:{have} \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{{n}} \:−\mathrm{1}\right)={x}^{{n}+\mathrm{1}} −{x}\:−{x}^{{n}} \:+\mathrm{1}\:\Rightarrow \\ $$$$\frac{{d}}{{dx}}\left(\:\left({x}−\mathrm{1}\right)\left({x}^{{n}} −\mathrm{1}\right)\right)=\left({n}+\mathrm{1}\right){x}^{{n}} \:−{nx}^{{n}−\mathrm{1}} \:−\mathrm{1}\Rightarrow \\ $$$$\lambda_{{k}} =\:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){z}_{{k}} ^{{n}} \:−{n}\:{z}_{{k}} ^{{n}−\mathrm{1}} \:−\mathrm{1}}\:=\frac{\mathrm{1}}{{n}+\mathrm{1}−\frac{{n}}{{z}_{{k}} }−\mathrm{1}}=\:\frac{{z}_{{k}} }{{nz}_{{k}} −{n}} \\ $$$${the}\:{ch}.{x}−\mathrm{1}={y}\:{give}\:{F}\left({x}\right)=\:\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{1}+{x}\:+{x}^{\mathrm{2}} \:+...+{x}^{{n}−\mathrm{1}} \right)} \\ $$$$={g}\left({y}\right)=\:\frac{\mathrm{1}}{{y}^{\mathrm{2}} \left(\mathrm{1}+\left(\mathrm{1}+{y}\right)\:+\left(\mathrm{1}+{y}\right)^{\mathrm{2}} \:+....\left(\mathrm{1}+{y}\right)^{{n}−\mathrm{1}} \right)}\:{after} \\ $$$${divide}\:\mathrm{1}\:{per}\:\mathrm{2}+{y}\:+\left(\mathrm{1}+{y}\right)^{\mathrm{2}} \:+...\left(\mathrm{1}+{y}\right)^{{n}−\mathrm{1}} \:{folowing}\:{the} \\ $$$${increasing}\:{powers}\:{after}\:{all}\:{calculus}\:{we}\:{find} \\ $$$${a}=\frac{\mathrm{1}−{n}}{\mathrm{2}{n}}\:{and}\:{b}=\:\frac{\mathrm{1}}{{n}}\:{look}\:{also}\:{that} \\ $$$${b}={lim}_{{x}\rightarrow\mathrm{1}} \left({x}−\mathrm{1}\right)^{\mathrm{2}} {F}\left({x}\right)={lim}_{{x}\rightarrow\mathrm{1}} \:\:\frac{\mathrm{1}}{\mathrm{1}+{x}\:+{x}^{\mathrm{2}} \:+...+{x}^{{n}−\mathrm{1}} }\:=\frac{\mathrm{1}}{{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com