Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 30601 by abdo imad last updated on 23/Feb/18

for 0<r≤1 and (θ,x)∈R^2   find  S=Σ_(n=0) ^∞  r^n cos(nθ).

$${for}\:\mathrm{0}<{r}\leqslant\mathrm{1}\:{and}\:\left(\theta,{x}\right)\in{R}^{\mathrm{2}} \:\:{find} \\ $$ $${S}=\sum_{{n}=\mathrm{0}} ^{\infty} \:{r}^{{n}} {cos}\left({n}\theta\right). \\ $$

Commented byabdo imad last updated on 24/Feb/18

S=Re(Σ_(n=0) ^∞  r^n  e^(inθ) )but  Σ_(n=0) ^∞  r^n  e^(inθ)  = Σ_(n=0) ^∞ (re^(iθ) )^n  =(1/(1−re^(iθ) ))  =   (1/(1−r cosθ −irsinθ))=((1−r cosθ  +isinθ)/((1−r cosθ)^2  +r^2 sin^2 θ)) ⇒  S=   ((1−r cosθ)/((1−rcosθ)^2  +r^2  sin^2 θ))=((1−r cosθ)/(1−2rcosθ +r^2 ))  but we must  study the case r=1.

$${S}={Re}\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{r}^{{n}} \:{e}^{{in}\theta} \right){but} \\ $$ $$\sum_{{n}=\mathrm{0}} ^{\infty} \:{r}^{{n}} \:{e}^{{in}\theta} \:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \left({re}^{{i}\theta} \right)^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}−{re}^{{i}\theta} } \\ $$ $$=\:\:\:\frac{\mathrm{1}}{\mathrm{1}−{r}\:{cos}\theta\:−{irsin}\theta}=\frac{\mathrm{1}−{r}\:{cos}\theta\:\:+{isin}\theta}{\left(\mathrm{1}−{r}\:{cos}\theta\right)^{\mathrm{2}} \:+{r}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}\:\Rightarrow \\ $$ $${S}=\:\:\:\frac{\mathrm{1}−{r}\:{cos}\theta}{\left(\mathrm{1}−{rcos}\theta\right)^{\mathrm{2}} \:+{r}^{\mathrm{2}} \:{sin}^{\mathrm{2}} \theta}=\frac{\mathrm{1}−{r}\:{cos}\theta}{\mathrm{1}−\mathrm{2}{rcos}\theta\:+{r}^{\mathrm{2}} }\:\:{but}\:{we}\:{must} \\ $$ $${study}\:{the}\:{case}\:{r}=\mathrm{1}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com