Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 30719 by mrW2 last updated on 24/Feb/18

Commented by mrW2 last updated on 25/Feb/18

This question is not visible any more.  The question is:  Find the side lengths of ΔPQR in  terms of a,b,c.

$${This}\:{question}\:{is}\:{not}\:{visible}\:{any}\:{more}. \\ $$$${The}\:{question}\:{is}: \\ $$$${Find}\:{the}\:{side}\:{lengths}\:{of}\:\Delta{PQR}\:{in} \\ $$$${terms}\:{of}\:{a},{b},{c}. \\ $$

Commented by mrW2 last updated on 24/Feb/18

((a′)/a)=((b′)/b)=((c′)/c)=k=((a^2 +b^2 +c^2 )/(8(√(s(s−a)(s−b)(s−c)))))  please confirm.

$$\frac{{a}'}{{a}}=\frac{{b}'}{{b}}=\frac{{c}'}{{c}}={k}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{8}\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}} \\ $$$${please}\:{confirm}. \\ $$

Commented by ajfour last updated on 25/Feb/18

Thanks Sir, solution please ..

$${Thanks}\:{Sir},\:{solution}\:{please}\:.. \\ $$

Commented by beh.i83417@gmail.com last updated on 25/Feb/18

.

$$. \\ $$

Answered by mrW2 last updated on 25/Feb/18

Commented by mrW2 last updated on 25/Feb/18

a′=RP=RF+FG+GP  RF=((IF)/(sin B))=((AF−AI)/(sin B))=(((c/2)−AE cos A)/(sin B))=((c−b cos A)/( 2sin B))  FG=BF sin B=((c sin B)/2)  GP=((GD)/(tan C))=((BD−BG)/(tan C))=(((a/2)−BF cos B)/(tan C))=((a−c cos B)/(2 tan C))    ⇒a′=((c−b cos A)/( 2sin B))+((c sin B)/2)+((a−c cos B)/(2 tan C))  ⇒a′=(((c−b cos A)sin C+c sin^2  B sin C+(a−c cos B)sin B cos C)/(2 sin B sin C))  ⇒a′=((c sin C−b cos A sin C+c sin^2  B sin C+a sin B cos C−c cos B sin B cos C)/(2 sin B sin C))  ⇒a′=((c sin C−b cos A sin C+c sin B (sin B sin C−cos B cos C)+a sin B cos C)/(2 sin B sin C))  ⇒a′=((a sin B cos C−b cos A sin C+c (sin C+cos A sin B))/(2 sin B sin C))  (a/(sin A))=(b/(sin B))=(c/(sin C))=(1/λ)=2R=((abc)/(2(√(s(s−a)(a−b)(s−c)))))  sin A=aλ, sin B=bλ, sin C=cλ  ⇒a′=((ab cos C−bc cos A+c(c+b cos A))/(2bcλ))  ⇒a′=((ab cos C+c^2 )/(2bcλ))  ⇒a′=((((a^2 +b^2 −c^2 )/2)+c^2 )/(2bcλ))  ⇒a′=((a^2 +b^2 +c^2 )/(4bcλ))  ⇒a′=((a^2 +b^2 +c^2 )/(4bc×((2(√(s(s−a)(s−b)(s−c))))/(abc))))  ⇒a′=((a^2 +b^2 +c^2 )/((8(√(s(s−a)(s−b)(s−c))))/a))  ⇒a′=a×((a^2 +b^2 +c^2 )/(8(√(s(s−a)(s−b)(s−c)))))  similarly:  ⇒b′=b×((a^2 +b^2 +c^2 )/(8(√(s(s−a)(s−b)(s−c)))))  ⇒c′=c×((a^2 +b^2 +c^2 )/(8(√(s(s−a)(s−b)(s−c)))))

$${a}'={RP}={RF}+{FG}+{GP} \\ $$$${RF}=\frac{{IF}}{\mathrm{sin}\:{B}}=\frac{{AF}−{AI}}{\mathrm{sin}\:{B}}=\frac{\frac{{c}}{\mathrm{2}}−{AE}\:\mathrm{cos}\:{A}}{\mathrm{sin}\:{B}}=\frac{{c}−{b}\:\mathrm{cos}\:{A}}{\:\mathrm{2sin}\:{B}} \\ $$$${FG}={BF}\:\mathrm{sin}\:{B}=\frac{{c}\:\mathrm{sin}\:{B}}{\mathrm{2}} \\ $$$${GP}=\frac{{GD}}{\mathrm{tan}\:{C}}=\frac{{BD}−{BG}}{\mathrm{tan}\:{C}}=\frac{\frac{{a}}{\mathrm{2}}−{BF}\:\mathrm{cos}\:{B}}{\mathrm{tan}\:{C}}=\frac{{a}−{c}\:\mathrm{cos}\:{B}}{\mathrm{2}\:\mathrm{tan}\:{C}} \\ $$$$ \\ $$$$\Rightarrow{a}'=\frac{{c}−{b}\:\mathrm{cos}\:{A}}{\:\mathrm{2sin}\:{B}}+\frac{{c}\:\mathrm{sin}\:{B}}{\mathrm{2}}+\frac{{a}−{c}\:\mathrm{cos}\:{B}}{\mathrm{2}\:\mathrm{tan}\:{C}} \\ $$$$\Rightarrow{a}'=\frac{\left({c}−{b}\:\mathrm{cos}\:{A}\right)\mathrm{sin}\:{C}+{c}\:\mathrm{sin}^{\mathrm{2}} \:{B}\:\mathrm{sin}\:{C}+\left({a}−{c}\:\mathrm{cos}\:{B}\right)\mathrm{sin}\:{B}\:\mathrm{cos}\:{C}}{\mathrm{2}\:\mathrm{sin}\:{B}\:\mathrm{sin}\:{C}} \\ $$$$\Rightarrow{a}'=\frac{{c}\:\mathrm{sin}\:{C}−{b}\:\mathrm{cos}\:{A}\:\mathrm{sin}\:{C}+{c}\:\mathrm{sin}^{\mathrm{2}} \:{B}\:\mathrm{sin}\:{C}+{a}\:\mathrm{sin}\:{B}\:\mathrm{cos}\:{C}−{c}\:\mathrm{cos}\:{B}\:\mathrm{sin}\:{B}\:\mathrm{cos}\:{C}}{\mathrm{2}\:\mathrm{sin}\:{B}\:\mathrm{sin}\:{C}} \\ $$$$\Rightarrow{a}'=\frac{{c}\:\mathrm{sin}\:{C}−{b}\:\mathrm{cos}\:{A}\:\mathrm{sin}\:{C}+{c}\:\mathrm{sin}\:{B}\:\left(\mathrm{sin}\:{B}\:\mathrm{sin}\:{C}−\mathrm{cos}\:{B}\:\mathrm{cos}\:{C}\right)+{a}\:\mathrm{sin}\:{B}\:\mathrm{cos}\:{C}}{\mathrm{2}\:\mathrm{sin}\:{B}\:\mathrm{sin}\:{C}} \\ $$$$\Rightarrow{a}'=\frac{{a}\:\mathrm{sin}\:{B}\:\mathrm{cos}\:{C}−{b}\:\mathrm{cos}\:{A}\:\mathrm{sin}\:{C}+{c}\:\left(\mathrm{sin}\:{C}+\mathrm{cos}\:{A}\:\mathrm{sin}\:{B}\right)}{\mathrm{2}\:\mathrm{sin}\:{B}\:\mathrm{sin}\:{C}} \\ $$$$\frac{{a}}{\mathrm{sin}\:{A}}=\frac{{b}}{\mathrm{sin}\:{B}}=\frac{{c}}{\mathrm{sin}\:{C}}=\frac{\mathrm{1}}{\lambda}=\mathrm{2}{R}=\frac{{abc}}{\mathrm{2}\sqrt{{s}\left({s}−{a}\right)\left({a}−{b}\right)\left({s}−{c}\right)}} \\ $$$$\mathrm{sin}\:{A}={a}\lambda,\:\mathrm{sin}\:{B}={b}\lambda,\:\mathrm{sin}\:{C}={c}\lambda \\ $$$$\Rightarrow{a}'=\frac{{ab}\:\mathrm{cos}\:{C}−{bc}\:\mathrm{cos}\:{A}+{c}\left({c}+{b}\:\mathrm{cos}\:{A}\right)}{\mathrm{2}{bc}\lambda} \\ $$$$\Rightarrow{a}'=\frac{{ab}\:\mathrm{cos}\:{C}+{c}^{\mathrm{2}} }{\mathrm{2}{bc}\lambda} \\ $$$$\Rightarrow{a}'=\frac{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}}+{c}^{\mathrm{2}} }{\mathrm{2}{bc}\lambda} \\ $$$$\Rightarrow{a}'=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{4}{bc}\lambda} \\ $$$$\Rightarrow{a}'=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{4}{bc}×\frac{\mathrm{2}\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}}{{abc}}} \\ $$$$\Rightarrow{a}'=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\frac{\mathrm{8}\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}}{{a}}} \\ $$$$\Rightarrow{a}'={a}×\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{8}\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}} \\ $$$${similarly}: \\ $$$$\Rightarrow{b}'={b}×\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{8}\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}} \\ $$$$\Rightarrow{c}'={c}×\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{8}\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}} \\ $$

Commented by ajfour last updated on 26/Feb/18

Thank you sir, great solution,  and was much awaited !

$${Thank}\:{you}\:{sir},\:{great}\:{solution}, \\ $$$${and}\:{was}\:{much}\:{awaited}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com