All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 30743 by abdo imad last updated on 25/Feb/18
decomposeinsideR[x]p(x)=x2n+1−1thenfind∏k=1nsin(kπ2n+1).
Commented by abdo imad last updated on 02/Mar/18
therootsofp(x)?z2n+1−1=0⇔z2n+1=ei(2kπ)sotherootsarezk=ei2kπ2n+1withk∈[[0,2n]]⇒p(x)=∏k=02n(x−zk)=(x−1)∏k=12n(x−ei2kπ2n+1)⇒p(x)x−1=∏k=12n(x−ei2kπ2n+1)⇒limx→1p(x)x−1=∏k=12n(1−ei2kπ2n+1)⇒(2n+1)=∏k=12n(1−cos(2kπ2n+1)−isin(2kπ2n+1))=∏k=12n(2sin2(kπ2n+1)−2isin(kπ2n+1)cos(kπ2n+1))=22n(−1)n∏k=12nsin(kπ2n+1)ei(kπ2n+1)=22n(−i)n(∏k=12nsin(kπ2n+1))eiπ2n+12n(2n+1)2=22n∏k=12nsin(kπ2n+1)but∏k=12nsin(kπ2n+1)=∏k=1nsin(kπ2n+1)∏k=n+12nsin(kπ2n+1)thech.k−n=jgive∏k=n+12nsin(kπ2n+1)=∏j=1nsin((n+j)π2n+1)=∏j=1nsin(π−nπ+jπ2n+1)=∏j=1nsin(2nπ+π−nπ−jπ2n+1)=∏j=1nsin((n+1−j)π2n+1)=∏k=1nsin(kπ2n+1)bych.n+1−j=k⇒2n+1=(2n)2(∏k=1nsin(kπ2n+1))2⇒∏k=1nsin(kπ2n+1)=2n+12n.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com