Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 30743 by abdo imad last updated on 25/Feb/18

decompose inside R[x]  p(x)=x^(2n+1)  −1 then find  Π_(k=1) ^n  sin( ((kπ)/(2n+1))) .

decomposeinsideR[x]p(x)=x2n+11thenfindk=1nsin(kπ2n+1).

Commented by abdo imad last updated on 02/Mar/18

the roots of p(x) ?  z^(2n+1) −1=0 ⇔ z^(2n+1) =e^(i(2kπ))   so the roots are z_k = e^(i((2kπ)/(2n+1)))   with k∈ [[0,2n]] ⇒  p(x)=Π_(k=0) ^(2n)  (x−z_k )=(x−1) Π_(k=1) ^(2n) (x− e^(i((2kπ)/(2n+1))) ) ⇒  ((p(x))/(x−1)) =Π_(k=1) ^(2n)  (x−e^(i((2kπ)/(2n+1))) ) ⇒lim_(x→1)   ((p(x))/(x−1)) =Π_(k=1) ^(2n) (1−e^(i((2kπ)/(2n+1))) )  ⇒ (2n+1)=Π_(k=1) ^(2n) (1−cos(((2kπ)/(2n+1))) −isin(((2kπ)/(2n+1))))  =Π_(k=1) ^(2n)  (2sin^2 ( ((kπ)/(2n+1))) −2i sin(((kπ)/(2n+1)))cos(((kπ)/(2n+1))))  =2^(2n)  (−1)^n  Π_(k=1) ^(2n)  sin(((kπ)/(2n+1))) e^(i(((kπ)/(2n+1))))   =2^(2n) (−i)^n ( Π_(k=1) ^(2n)  sin(((kπ)/(2n+1)))) e^(i(π/(2n+1))((2n(2n+1))/2))   =2^(2n)  Π_(k=1) ^(2n)  sin(((kπ)/(2n+1))) but  Π_(k=1) ^(2n)  sin(((kπ)/(2n+1)))=Π_(k=1) ^n  sin(((kπ)/(2n+1))) Π_(k=n+1) ^(2n) sin(((kπ)/(2n+1)))the  ch.k−n=j give  Π_(k=n+1) ^(2n)  sin(((kπ)/(2n+1))) =Π_(j=1) ^n  sin( (((n+j)π)/(2n+1)))  =Π_(j=1) ^n  sin(π −((nπ +jπ)/(2n+1)))=Π_(j=1) ^n sin(((2nπ +π −nπ −jπ)/(2n+1)))  =Π_(j=1) ^n  sin ((((n+1−j)π)/(2n+1)))=Π_(k=1) ^n  sin( ((kπ)/(2n+1)) ) by ch.n+1−j=k⇒  2n+1=(2^n )^(2 )   (Π_(k=1) ^n  sin(((kπ)/(2n+1))))^2  ⇒  Π_(k=1) ^n    sin(((kπ)/(2n+1))) =((√(2n+1))/2^n ) .

therootsofp(x)?z2n+11=0z2n+1=ei(2kπ)sotherootsarezk=ei2kπ2n+1withk[[0,2n]]p(x)=k=02n(xzk)=(x1)k=12n(xei2kπ2n+1)p(x)x1=k=12n(xei2kπ2n+1)limx1p(x)x1=k=12n(1ei2kπ2n+1)(2n+1)=k=12n(1cos(2kπ2n+1)isin(2kπ2n+1))=k=12n(2sin2(kπ2n+1)2isin(kπ2n+1)cos(kπ2n+1))=22n(1)nk=12nsin(kπ2n+1)ei(kπ2n+1)=22n(i)n(k=12nsin(kπ2n+1))eiπ2n+12n(2n+1)2=22nk=12nsin(kπ2n+1)butk=12nsin(kπ2n+1)=k=1nsin(kπ2n+1)k=n+12nsin(kπ2n+1)thech.kn=jgivek=n+12nsin(kπ2n+1)=j=1nsin((n+j)π2n+1)=j=1nsin(πnπ+jπ2n+1)=j=1nsin(2nπ+πnπjπ2n+1)=j=1nsin((n+1j)π2n+1)=k=1nsin(kπ2n+1)bych.n+1j=k2n+1=(2n)2(k=1nsin(kπ2n+1))2k=1nsin(kπ2n+1)=2n+12n.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com