Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 30752 by abdo imad last updated on 25/Feb/18

let f(x)= (1/(1+x^2 ))  calculate f^((n)) (x).

$${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right). \\ $$

Commented by abdo imad last updated on 28/Feb/18

we have f(x)= (1/((x+i)(x−i)))=(1/(2i))( (1/(x−i)) −(1/(x+i))) ⇒  f^((n)) (x)= (1/(2i))( ((1/(x−i)))^((n)) −((1/(x+i)))^((n)) )  =(1/(2i))( (((−1)^n n!)/((x−i)^(n+1) )) −(((−1)^n n!)/((x+i)^(n+1) )))  =((n!(−1)^n )/(2i))( (((x+i)^(n+1)  −(x−i)^(n+1) )/((1+x^2 )^(n+1) ))) but  (x+i)^(n+1)  −(x−i)^(n+1) = Σ_(k=0) ^(n+1)   C_(n+1) ^k  i^k  x^(n+1−k)   −Σ_(k=0) ^(n+1)  (−i)^k  x^(n+1−k) =Σ_(k=0) ^(n+1)  C_(n+1) ^k ( i^k  −(−i)^k )x^(n+1−k)   =Σ_(p=0) ^([(n/2)])   C_(n+1) ^(2p+1)  (2i) x^(n+1−2p−1)  ⇒  f^((n)) (x)=n! (−1)^n   ((Σ_(p=0) ^([(n/2)])   C_(n+1) ^(2p+1)   x^(n−2p) )/((1+x^2 )^(n+1) )) . also wecan give  f^((n)) at form of arctan....

$${we}\:{have}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\left({x}+{i}\right)\left({x}−{i}\right)}=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\:\frac{\mathrm{1}}{{x}−{i}}\:−\frac{\mathrm{1}}{{x}+{i}}\right)\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\:\left(\frac{\mathrm{1}}{{x}−{i}}\right)^{\left({n}\right)} −\left(\frac{\mathrm{1}}{{x}+{i}}\right)^{\left({n}\right)} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\:\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({x}−{i}\right)^{{n}+\mathrm{1}} }\:−\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({x}+{i}\right)^{{n}+\mathrm{1}} }\right) \\ $$$$=\frac{{n}!\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{i}}\left(\:\frac{\left({x}+{i}\right)^{{n}+\mathrm{1}} \:−\left({x}−{i}\right)^{{n}+\mathrm{1}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}+\mathrm{1}} }\right)\:{but} \\ $$$$\left({x}+{i}\right)^{{n}+\mathrm{1}} \:−\left({x}−{i}\right)^{{n}+\mathrm{1}} =\:\sum_{{k}=\mathrm{0}} ^{{n}+\mathrm{1}} \:\:{C}_{{n}+\mathrm{1}} ^{{k}} \:{i}^{{k}} \:{x}^{{n}+\mathrm{1}−{k}} \\ $$$$−\sum_{{k}=\mathrm{0}} ^{{n}+\mathrm{1}} \:\left(−{i}\right)^{{k}} \:{x}^{{n}+\mathrm{1}−{k}} =\sum_{{k}=\mathrm{0}} ^{{n}+\mathrm{1}} \:{C}_{{n}+\mathrm{1}} ^{{k}} \left(\:{i}^{{k}} \:−\left(−{i}\right)^{{k}} \right){x}^{{n}+\mathrm{1}−{k}} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\:{C}_{{n}+\mathrm{1}} ^{\mathrm{2}{p}+\mathrm{1}} \:\left(\mathrm{2}{i}\right)\:{x}^{{n}+\mathrm{1}−\mathrm{2}{p}−\mathrm{1}} \:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left({x}\right)={n}!\:\left(−\mathrm{1}\right)^{{n}} \:\:\frac{\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\:{C}_{{n}+\mathrm{1}} ^{\mathrm{2}{p}+\mathrm{1}} \:\:{x}^{{n}−\mathrm{2}{p}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}+\mathrm{1}} }\:.\:{also}\:{wecan}\:{give} \\ $$$${f}^{\left({n}\right)} {at}\:{form}\:{of}\:{arctan}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com