Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 30757 by abdo imad last updated on 25/Feb/18

find lim_(n→∞)   ((1/n) +(1/(√(n^2  −1))) +.... +(1/(√(n^2  −(n−1)^2 ))) )

$${find}\:{lim}_{{n}\rightarrow\infty} \:\:\left(\frac{\mathrm{1}}{{n}}\:+\frac{\mathrm{1}}{\sqrt{{n}^{\mathrm{2}} \:−\mathrm{1}}}\:+....\:+\frac{\mathrm{1}}{\sqrt{{n}^{\mathrm{2}} \:−\left({n}−\mathrm{1}\right)^{\mathrm{2}} }}\:\right) \\ $$

Commented by abdo imad last updated on 28/Feb/18

let put w_n = (1/n) +(1/(√(n^2 −1))) +...+(1/(√(n^2  −(n−1)^2 )))  w_n =(1/n)( 1+(1/(√(1−(1^2 /n^2 )))) +(1/(√(1−(2^2 /n^2 )))) +..... + (1/(√(1−(((n−1)^2 )/n^2 )))))  = (1/n)Σ_(k=0) ^(n−1)   (1/(√(1 −((k/n))^2 ))) so w_n  is a Rieman sum and  lim_(n→∞)  w_n   = ∫_0 ^1     (dx/(√(1−x^2 ))) =[arcsinx]_0 ^1  =(π/2) .

$${let}\:{put}\:{w}_{{n}} =\:\frac{\mathrm{1}}{{n}}\:+\frac{\mathrm{1}}{\sqrt{{n}^{\mathrm{2}} −\mathrm{1}}}\:+...+\frac{\mathrm{1}}{\sqrt{{n}^{\mathrm{2}} \:−\left({n}−\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$${w}_{{n}} =\frac{\mathrm{1}}{{n}}\left(\:\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{1}−\frac{\mathrm{1}^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{1}−\frac{\mathrm{2}^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}\:+.....\:+\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}−\frac{\left({n}−\mathrm{1}\right)^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}\right) \\ $$$$=\:\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}\:−\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} }}\:{so}\:{w}_{{n}} \:{is}\:{a}\:{Rieman}\:{sum}\:{and} \\ $$$${lim}_{{n}\rightarrow\infty} \:{w}_{{n}} \:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:=\left[{arcsinx}\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\pi}{\mathrm{2}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com