All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 30769 by abdo imad last updated on 25/Feb/18
findthevalueofI=∫01dx(x+1)2x2+2x+2.
Commented by abdo imad last updated on 27/Feb/18
wehavex2+2x+2=(x+1)2+1thech=x+1=tgiveI=∫12dtt21+t2thewecanusethech.t=tanθ⇒I=∫π4artan21+tan2θtan2θ1+tan2θdθ=∫π4arctan2cos2θsin2θ1cosθdθ=∫π4arctan2cosθsin2θdθ=[−1sinθ]π4arctan2=2−1sin(arctan2)butwehavetheformulasin(arctanx)=x1+x2(forproofputx=tanθ)⇒sin(arctan2)=25⇒I=2−25.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com