Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 30769 by abdo imad last updated on 25/Feb/18

find the value of I= ∫_0 ^1      (dx/((x+1)^2 (√(x^2  +2x +2)))) .

findthevalueofI=01dx(x+1)2x2+2x+2.

Commented by abdo imad last updated on 27/Feb/18

we have x^2  +2x+2=(x+1)^2  +1 the ch=x+1=t give  I= ∫_1 ^2     (dt/(t^2 (√(1+t^2 )))) the we can use the ch.t=tanθ ⇒  I= ∫_(π/4) ^(artan2)  ((1+tan^2 θ)/(tan^2 θ(√(1+tan^2 θ))))dθ = ∫_(π/4) ^(arctan2)    ((cos^2 θ)/(sin^2 θ)) (1/(cosθ))dθ  = ∫_(π/4) ^(arctan2)     ((cosθ)/(sin^2 θ)) dθ  =[−(1/(sinθ))]_(π/4) ^(arctan2)   =(√2) − (1/(sin(arctan2))) but we have the formula  sin(arctanx)= (x/(√(1+x^2 )))( for proof put x=tanθ)⇒  sin(arctan2)= (2/(√5))  ⇒ I=(√2)  −(2/(√5)) .

wehavex2+2x+2=(x+1)2+1thech=x+1=tgiveI=12dtt21+t2thewecanusethech.t=tanθI=π4artan21+tan2θtan2θ1+tan2θdθ=π4arctan2cos2θsin2θ1cosθdθ=π4arctan2cosθsin2θdθ=[1sinθ]π4arctan2=21sin(arctan2)butwehavetheformulasin(arctanx)=x1+x2(forproofputx=tanθ)sin(arctan2)=25I=225.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com