Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 30773 by abdo imad last updated on 25/Feb/18

let a>0 calculate ∫_0 ^∞      (dx/((x^2  +a^2 )^2 ))  2) calculate  ∫_(−∞) ^(+∞)    (x^2 /((x^2  +a^2 )^2 ))dx.

leta>0calculate0dx(x2+a2)2 2)calculate+x2(x2+a2)2dx.

Commented byabdo imad last updated on 26/Feb/18

1)the ch. x=a tant give  I=∫_0 ^∞   (dx/((x^2  +a^2 )^2 )) = ∫_0 ^(π/2)    (1/(a^4 (1+tan^2 t)^2 )) a(1+tan^2 t)dt  =(1/a^3 ) ∫_0 ^(π/2)    (dt/(1+tan^2 t))⇒a^3  I= ∫_0 ^(π/2)  cos^2 tdt  = ∫_0 ^(π/2)  ((1+cos(2t))/2)dt=(π/4) +[(1/4) sin(2t)]_0 ^(π/2)   =(π/4) ⇒  I=(π/(4 a^3 ))  2) let put J= ∫_(−∞) ^(+∞)    (x^2 /((x^2  +a^2 )^2 ))dx  J= 2∫_0 ^∞   ((x^2  +a^(2 )  −a^2 )/((x^2  +a^2 )^2 ))dx =2∫_0 ^∞   (dx/((x^2  +a^2 )))dx −2a^2  ∫_0 ^∞   (dx/((x^2  +a^2 )^2 ))dx  ch x=at ⇒ ∫_0 ^∞    (dx/((x^2  +a^2 )))= ∫_0 ^∞   ((adt)/(a^2 (1+t^2 )))=(1/a)(π/2)= (π/(2a))  J=(π/a) −2a^2  I = (π/a) −2a^2  (π/(4a^3 ))= (π/a) −(π/(2a))⇒ J=(π/(2a)) .

1)thech.x=atantgive I=0dx(x2+a2)2=0π21a4(1+tan2t)2a(1+tan2t)dt =1a30π2dt1+tan2ta3I=0π2cos2tdt =0π21+cos(2t)2dt=π4+[14sin(2t)]0π2=π4 I=π4a3 2)letputJ=+x2(x2+a2)2dx J=20x2+a2a2(x2+a2)2dx=20dx(x2+a2)dx2a20dx(x2+a2)2dx chx=at0dx(x2+a2)=0adta2(1+t2)=1aπ2=π2a J=πa2a2I=πa2a2π4a3=πaπ2aJ=π2a.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com