All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 30774 by abdo imad last updated on 25/Feb/18
findf(t)=∫01ln(1+tx2)dxwitht>0
Commented byabdo imad last updated on 26/Feb/18
letputtx=u⇒f(t)=∫0tln(1+u2)dut =1t∫0tln(1+u2)dubutwehavebyparts ∫0tln(1+u2)du=[uln(1+u2)]0t−∫0tu2u1+u2du =tln(1+t)−2∫0t1+u2−11+u2du =tln(1+t)−2t+2∫0tdu1+u2 =tln(1+t)−2t+2arctan(t)⇒ f(t)=ln(1+t)+2arctan(t)t−2.
Answered by sma3l2996 last updated on 25/Feb/18
letu=tx f(t)=∫0tln(1+u2)du =[uln(1+u2)]0t−2∫0tu21+u2du =tln(1+t2)−2∫0t(1−11+u2)du =tln(1+t2)−2[u−tan−1(u)]0t f(t)=tln(1+t2)−2t+2tan−1(t)
ifu=txwehaveln(1+tx2)≠ln(1+u2)andyouranswer sirsma3isnotcorect...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com