Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 30774 by abdo imad last updated on 25/Feb/18

find f(t)=∫_0 ^1  ln(1+tx^2 )dx  with t>0

$${find}\:{f}\left({t}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{tx}^{\mathrm{2}} \right){dx}\:\:{with}\:{t}>\mathrm{0} \\ $$

Commented byabdo imad last updated on 26/Feb/18

let put (√t) x=u ⇒f(t)= ∫_0 ^(√t)  ln(1+u^2 )(du/(√t))  =(1/(√t)) ∫_0 ^(√t) ln(1+u^2 )du  but we have by parts  ∫_0 ^(√t) ln(1+u^2 )du= [uln(1+u^2 )]_0 ^(√t)  −∫_0 ^(√t) u((2u)/(1+u^2 ))du  =(√t) ln(1+t) −2∫_0 ^(√t) ((1+u^2  −1)/(1+u^2 ))du  =(√t) ln(1+t) −2(√t) +2 ∫_0 ^(√t)  (du/(1+u^2 ))  =(√t) ln(1+t)−2(√t)  +2 arctan((√t))⇒  f(t)= ln(1+t) +((2 arctan((√t)))/(√t)) −2 .

$${let}\:{put}\:\sqrt{{t}}\:{x}={u}\:\Rightarrow{f}\left({t}\right)=\:\int_{\mathrm{0}} ^{\sqrt{{t}}} \:{ln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\frac{{du}}{\sqrt{{t}}} \\ $$ $$=\frac{\mathrm{1}}{\sqrt{{t}}}\:\int_{\mathrm{0}} ^{\sqrt{{t}}} {ln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right){du}\:\:{but}\:{we}\:{have}\:{by}\:{parts} \\ $$ $$\int_{\mathrm{0}} ^{\sqrt{{t}}} {ln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right){du}=\:\left[{uln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\sqrt{{t}}} \:−\int_{\mathrm{0}} ^{\sqrt{{t}}} {u}\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }{du} \\ $$ $$=\sqrt{{t}}\:{ln}\left(\mathrm{1}+{t}\right)\:−\mathrm{2}\int_{\mathrm{0}} ^{\sqrt{{t}}} \frac{\mathrm{1}+{u}^{\mathrm{2}} \:−\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }{du} \\ $$ $$=\sqrt{{t}}\:{ln}\left(\mathrm{1}+{t}\right)\:−\mathrm{2}\sqrt{{t}}\:+\mathrm{2}\:\int_{\mathrm{0}} ^{\sqrt{{t}}} \:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$ $$=\sqrt{{t}}\:{ln}\left(\mathrm{1}+{t}\right)−\mathrm{2}\sqrt{{t}}\:\:+\mathrm{2}\:{arctan}\left(\sqrt{{t}}\right)\Rightarrow \\ $$ $${f}\left({t}\right)=\:{ln}\left(\mathrm{1}+{t}\right)\:+\frac{\mathrm{2}\:{arctan}\left(\sqrt{{t}}\right)}{\sqrt{{t}}}\:−\mathrm{2}\:. \\ $$

Answered by sma3l2996 last updated on 25/Feb/18

let  u=tx  f(t)=∫_0 ^t ln(1+u^2 )du  =[uln(1+u^2 )]_0 ^t −2∫_0 ^t (u^2 /(1+u^2 ))du  =tln(1+t^2 )−2∫_0 ^t (1−(1/(1+u^2 )))du  =tln(1+t^2 )−2[u−tan^(−1) (u)]_0 ^t   f(t)=tln(1+t^2 )−2t+2tan^(−1) (t)

$${let}\:\:{u}={tx} \\ $$ $${f}\left({t}\right)=\int_{\mathrm{0}} ^{{t}} {ln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right){du} \\ $$ $$=\left[{uln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{{t}} −\mathrm{2}\int_{\mathrm{0}} ^{{t}} \frac{{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }{du} \\ $$ $$={tln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)−\mathrm{2}\int_{\mathrm{0}} ^{{t}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\right){du} \\ $$ $$={tln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)−\mathrm{2}\left[{u}−{tan}^{−\mathrm{1}} \left({u}\right)\right]_{\mathrm{0}} ^{{t}} \\ $$ $${f}\left({t}\right)={tln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)−\mathrm{2}{t}+\mathrm{2}{tan}^{−\mathrm{1}} \left({t}\right) \\ $$

Commented byabdo imad last updated on 26/Feb/18

if u=tx we have ln(1+tx^2 )≠ln(1+u^2 ) and your answer  sir sma3 is not corect...

$${if}\:{u}={tx}\:{we}\:{have}\:{ln}\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)\neq{ln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\:{and}\:{your}\:{answer} \\ $$ $${sir}\:{sma}\mathrm{3}\:{is}\:{not}\:{corect}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com