Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 30820 by ajfour last updated on 26/Feb/18

Answered by mrW2 last updated on 26/Feb/18

Eqn. of ellipse 1 (original one):  (x^2 /a^2 )+(y^2 /b^2 )=1  ((r^2 cos^2  ϕ)/a^2 )+((r^2 sin^2  ϕ)/b^2 )=1  ⇒r^2 [((cos^2  ϕ)/a^2 )+((sin^2  ϕ)/b^2 )]=1  ⇒r^2 =((a^2 b^2 )/(a^2 sin^2  ϕ+b^2 cos^2  ϕ))  Eqn. of ellipse 2 (rotated one):  ⇒r^2 [((cos^2  (ϕ−θ))/a^2 )+((sin^2  (ϕ−θ))/b^2 )]=1  ⇒r^2 =((a^2 b^2 )/(a^2 sin^2  (ϕ−θ)+b^2 cos^2  (ϕ−θ)))    Intersection of both ellipses:  ((cos^2  ϕ)/a^2 )+((sin^2  ϕ)/b^2 )=((cos^2  (ϕ−θ))/a^2 )+((sin^2  (ϕ−θ))/b^2 )  b^2  cos^2  ϕ+a^2  sin^2  ϕ=b^2  cos^2  (ϕ−θ)+a^2  sin^2  (ϕ−θ)  b^2  cos^2  ϕ+a^2  sin^2  ϕ=b^2  (cos ϕ cos θ+sin ϕ sin θ)^2 +a^2  (sin ϕ cos θ−cos ϕ sin θ)^2   b^2  cos^2  ϕ+a^2  sin^2  ϕ=b^2  cos^2  ϕ cos^2  θ+b^2  sin^2  ϕ sin^2  θ+2b^2  sin ϕ cos ϕ sin θ cos θ+a^2  sin^2  ϕ cos^2  θ+a^2  cos^2  ϕ sin^2  θ−2a^2  sin ϕ cos ϕ sin θ cos θ  b^2  (cos^2  ϕ−sin^2  ϕ) sin^2  θ−a^2  (cos^2  ϕ−sin^2  ϕ) sin^2  θ=2(b^2 −a^2 ) sin ϕ cos ϕ sin θ cos θ  (b^2 −a^2 )cos 2ϕ sin^2  θ=(b^2 −a^2 ) sin 2ϕ sin θ cos θ  cos 2ϕ sin θ= sin 2ϕ cos θ  ⇒tan 2ϕ=tan θ  ⇒2ϕ=θ or θ+π  ⇒ϕ_1 =(θ/2)  ⇒ϕ_2 =(θ/2)+(π/2)  A=∫_ϕ_1  ^( ϕ_2 ) ∫_r_1  ^r_2  rdrdϕ  =(1/2)∫_ϕ_1  ^( ϕ_2 ) [r_2 ^2 −r_1 ^2 ]dϕ  =((a^2 b^2 )/2)∫_ϕ_1  ^( ϕ_2 ) [(1/(a^2 sin^2  (ϕ−θ)+b^2 cos^2  (ϕ−θ)))−(1/(a^2 sin^2  ϕ+b^2 cos^2  ϕ))]dϕ  =((a^2 b^2 )/2)[(1/(ab))tan^(−1) {(a/b) tan (ϕ−θ)}−(1/(ab))tan^(−1) {(a/b) tan ϕ}]_ϕ_1  ^ϕ_2    =((ab)/2)[tan^(−1) {(a/b) tan (ϕ−θ)}−tan^(−1) {(a/b) tan ϕ}]_ϕ_1  ^ϕ_2    =((ab)/2)[tan^(−1) {(a/b) tan ((π/2)−(θ/2))}−tan^(−1) {(a/b) tan ((π/2)+(θ/2))}−tan^(−1) {(a/b) tan ((θ/2)−θ)}+tan^(−1) {(a/b) tan (θ/2)}]  =((ab)/2)[2 tan^(−1) {(a/b) tan ((π/2)−(θ/2))}−π+2 tan^(−1) {(a/b) tan (θ/2)}]  =ab[tan^(−1) {(a/b) tan ((π/2)−(θ/2))}+tan^(−1) {(a/b) tan (θ/2)}−(π/2)]  =ab{(π/2)− tan^(−1) [((2ab)/((a^2 −b^2 )sin θ))]}  ⇒A=ab tan^(−1) ∣(((a^2 −b^2 )sin θ)/(2ab))∣    An other way:  A=(1/2)(πab−4∫_ϕ_1  ^( ϕ_2 ) (r_1 ^2 /2)dϕ)  =ab(π/2)−∫_ϕ_1  ^( ϕ_2 ) ((a^2 b^2 )/(a^2 sin^2  ϕ+b^2 cos^2  ϕ))dϕ  =ab(π/2)−a^2 b^2 [(1/(ab)) tan^(−1) {(a/b)tan ϕ}]_ϕ_1  ^ϕ_2    =ab(π/2)−ab[tan^(−1) {(a/b)tan ((π/2)+(θ/2))}−tan^(−1) {(a/b)tan ((θ/2))}]  =ab(π/2)−ab[π−tan^(−1) {(a/b)tan ((π/2)−(θ/2))}−tan^(−1) {(a/b)tan ((θ/2))}]  =ab[tan^(−1) {(a/b)tan ((π/2)−(θ/2))}+tan^(−1) {(a/b)tan ((θ/2))}−(π/2)]  ..... as above

Eqn.ofellipse1(originalone):x2a2+y2b2=1r2cos2φa2+r2sin2φb2=1r2[cos2φa2+sin2φb2]=1r2=a2b2a2sin2φ+b2cos2φEqn.ofellipse2(rotatedone):r2[cos2(φθ)a2+sin2(φθ)b2]=1r2=a2b2a2sin2(φθ)+b2cos2(φθ)Intersectionofbothellipses:cos2φa2+sin2φb2=cos2(φθ)a2+sin2(φθ)b2b2cos2φ+a2sin2φ=b2cos2(φθ)+a2sin2(φθ)b2cos2φ+a2sin2φ=b2(cosφcosθ+sinφsinθ)2+a2(sinφcosθcosφsinθ)2b2cos2φ+a2sin2φ=b2cos2φcos2θ+b2sin2φsin2θ+2b2sinφcosφsinθcosθ+a2sin2φcos2θ+a2cos2φsin2θ2a2sinφcosφsinθcosθb2(cos2φsin2φ)sin2θa2(cos2φsin2φ)sin2θ=2(b2a2)sinφcosφsinθcosθ(b2a2)cos2φsin2θ=(b2a2)sin2φsinθcosθcos2φsinθ=sin2φcosθtan2φ=tanθ2φ=θorθ+πφ1=θ2φ2=θ2+π2A=φ1φ2r1r2rdrdφ=12φ1φ2[r22r12]dφ=a2b22φ1φ2[1a2sin2(φθ)+b2cos2(φθ)1a2sin2φ+b2cos2φ]dφ=a2b22[1abtan1{abtan(φθ)}1abtan1{abtanφ}]φ1φ2=ab2[tan1{abtan(φθ)}tan1{abtanφ}]φ1φ2=ab2[tan1{abtan(π2θ2)}tan1{abtan(π2+θ2)}tan1{abtan(θ2θ)}+tan1{abtanθ2}]=ab2[2tan1{abtan(π2θ2)}π+2tan1{abtanθ2}]=ab[tan1{abtan(π2θ2)}+tan1{abtanθ2}π2]=ab{π2tan1[2ab(a2b2)sinθ]}A=abtan1(a2b2)sinθ2abAnotherway:A=12(πab4φ1φ2r122dφ)=abπ2φ1φ2a2b2a2sin2φ+b2cos2φdφ=abπ2a2b2[1abtan1{abtanφ}]φ1φ2=abπ2ab[tan1{abtan(π2+θ2)}tan1{abtan(θ2)}]=abπ2ab[πtan1{abtan(π2θ2)}tan1{abtan(θ2)}]=ab[tan1{abtan(π2θ2)}+tan1{abtan(θ2)}π2].....asabove

Commented by ajfour last updated on 26/Feb/18

O′ MY  God! You make it possible  Sir.Thank you immensely.  Its really great, Sir.

OMYGod!YoumakeitpossibleSir.Thankyouimmensely.Itsreallygreat,Sir.

Commented by ajfour last updated on 26/Feb/18

Yes Sir, thank you again.

YesSir,thankyouagain.

Commented by mrW2 last updated on 26/Feb/18

Thanks for checking!  I checked again. The final formula is  A=ab tan^(−1) ∣(((a^2 −b^2 )sin θ)/(2ab))∣  It′s more simple than I′ve expected.

Thanksforchecking!Icheckedagain.ThefinalformulaisA=abtan1(a2b2)sinθ2abItsmoresimplethanIveexpected.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com