Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 30849 by Penguin last updated on 27/Feb/18

x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x+1=0     Σ_(k=1) ^7 [ℜ(x_k )]^2  = ?  x_k  = k^( th)  root of the equation  ℜ(x_k ) = real part of the root

$${x}^{\mathrm{7}} +{x}^{\mathrm{6}} +{x}^{\mathrm{5}} +{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0} \\ $$$$\: \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{7}} {\sum}}\left[\Re\left({x}_{{k}} \right)\right]^{\mathrm{2}} \:=\:? \\ $$$${x}_{{k}} \:=\:{k}^{\:\mathrm{th}} \:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\Re\left({x}_{{k}} \right)\:=\:\mathrm{real}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{root} \\ $$

Commented by prof Abdo imad last updated on 27/Feb/18

z root for this equation ⇔ z^8 =1 and z≠o   the roots of this equation are z_k  =e^(i((kπ)/4))   and  k∈[[1,7]] ⇒ Re(z_k ) = cos(((kπ)/4))⇒  (Re(z_k ))^2 =cos^2 (((kπ)/4)) and  Σ_(k=1) ^7  (Re(z_k ))^2 = Σ_(k=1) ^7 ((1+cos(((kπ)/2)))/2)  =(7/2) +(1/2) Σ_(k=1) ^(7 )  cos(((kπ)/2)) but  Σ_(k=1) ^7  cos(((kπ)/2))=Σ_(k=0) ^7  cos(((kπ)/2)) −1  =Re( Σ_(k=0) ^7  e^(i((kπ)/2)) )−1  Re( ((1−(e^(i(π/2)) )^8 )/(1−e^(i(π/2)) )))−1=0−1=−1⇒  Σ_(k=1) ^7 (Re(z_k ))^2 =(7/2) −(1/2) =3.

$${z}\:{root}\:{for}\:{this}\:{equation}\:\Leftrightarrow\:{z}^{\mathrm{8}} =\mathrm{1}\:{and}\:{z}\neq{o}\: \\ $$$${the}\:{roots}\:{of}\:{this}\:{equation}\:{are}\:{z}_{{k}} \:={e}^{{i}\frac{{k}\pi}{\mathrm{4}}} \:\:{and} \\ $$$${k}\in\left[\left[\mathrm{1},\mathrm{7}\right]\right]\:\Rightarrow\:{Re}\left({z}_{{k}} \right)\:=\:{cos}\left(\frac{{k}\pi}{\mathrm{4}}\right)\Rightarrow \\ $$$$\left({Re}\left({z}_{{k}} \right)\right)^{\mathrm{2}} ={cos}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{4}}\right)\:{and} \\ $$$$\sum_{{k}=\mathrm{1}} ^{\mathrm{7}} \:\left({Re}\left({z}_{{k}} \right)\right)^{\mathrm{2}} =\:\sum_{{k}=\mathrm{1}} ^{\mathrm{7}} \frac{\mathrm{1}+{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)}{\mathrm{2}} \\ $$$$=\frac{\mathrm{7}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{1}} ^{\mathrm{7}\:} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)\:{but} \\ $$$$\sum_{{k}=\mathrm{1}} ^{\mathrm{7}} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)=\sum_{{k}=\mathrm{0}} ^{\mathrm{7}} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)\:−\mathrm{1} \\ $$$$={Re}\left(\:\sum_{{k}=\mathrm{0}} ^{\mathrm{7}} \:{e}^{{i}\frac{{k}\pi}{\mathrm{2}}} \right)−\mathrm{1} \\ $$$${Re}\left(\:\frac{\mathrm{1}−\left({e}^{{i}\frac{\pi}{\mathrm{2}}} \right)^{\mathrm{8}} }{\mathrm{1}−{e}^{{i}\frac{\pi}{\mathrm{2}}} }\right)−\mathrm{1}=\mathrm{0}−\mathrm{1}=−\mathrm{1}\Rightarrow \\ $$$$\sum_{{k}=\mathrm{1}} ^{\mathrm{7}} \left({Re}\left({z}_{{k}} \right)\right)^{\mathrm{2}} =\frac{\mathrm{7}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}}\:=\mathrm{3}. \\ $$$$ \\ $$

Commented by Penguin last updated on 27/Feb/18

Σ_(k=1) ^7  (Re(z_k ))^2 = Σ_(k=1) ^7 ((1+cos(((kπ)/2)))/2)  how did you get this result?

$$\sum_{{k}=\mathrm{1}} ^{\mathrm{7}} \:\left({Re}\left({z}_{{k}} \right)\right)^{\mathrm{2}} =\:\sum_{{k}=\mathrm{1}} ^{\mathrm{7}} \frac{\mathrm{1}+{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)}{\mathrm{2}} \\ $$$$\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{get}\:\mathrm{this}\:\mathrm{result}? \\ $$

Commented by MJS last updated on 27/Feb/18

I tried to solve it, must admit that  this might not always be possible  (but I always love to try...)  x_1 =−1  x_2 =−i  x_3 =i  x_4 =−((√2)/2)−((√2)/2)i  x_5 =−((√2)/2)+((√2)/2)i  x_6 =((√2)/2)−((√2)/2)i  x_7 =((√2)/2)+((√2)/2)i  Σ_(k=1) ^7 [ℜ(x_k )]^2  = 3

$$\mathrm{I}\:\mathrm{tried}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it},\:\mathrm{must}\:\mathrm{admit}\:\mathrm{that} \\ $$$$\mathrm{this}\:\mathrm{might}\:\mathrm{not}\:\mathrm{always}\:\mathrm{be}\:\mathrm{possible} \\ $$$$\left(\mathrm{but}\:\mathrm{I}\:\mathrm{always}\:\mathrm{love}\:\mathrm{to}\:\mathrm{try}...\right) \\ $$$${x}_{\mathrm{1}} =−\mathrm{1} \\ $$$${x}_{\mathrm{2}} =−\mathrm{i} \\ $$$${x}_{\mathrm{3}} =\mathrm{i} \\ $$$${x}_{\mathrm{4}} =−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i} \\ $$$${x}_{\mathrm{5}} =−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i} \\ $$$${x}_{\mathrm{6}} =\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i} \\ $$$${x}_{\mathrm{7}} =\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{7}} {\sum}}\left[\Re\left({x}_{{k}} \right)\right]^{\mathrm{2}} \:=\:\mathrm{3} \\ $$

Commented by rahul 19 last updated on 27/Feb/18

yahh, short methods!

$${yahh},\:{short}\:{methods}! \\ $$

Commented by abdo imad last updated on 28/Feb/18

look my proof i have used the formula cos^2 α=((1+cos(2α))/2) .

$${look}\:{my}\:{proof}\:{i}\:{have}\:{used}\:{the}\:{formula}\:{cos}^{\mathrm{2}} \alpha=\frac{\mathrm{1}+{cos}\left(\mathrm{2}\alpha\right)}{\mathrm{2}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com