Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 30871 by ajfour last updated on 27/Feb/18

If   2f(x)+f(−x)=(1/x)sin (x−(1/x))  Find   ∫_(1/e) ^(  e) f(x)dx  .

$${If}\:\:\:\mathrm{2}{f}\left({x}\right)+{f}\left(−{x}\right)=\frac{\mathrm{1}}{{x}}\mathrm{sin}\:\left({x}−\frac{\mathrm{1}}{{x}}\right) \\ $$$${Find}\:\:\:\int_{\mathrm{1}/{e}} ^{\:\:{e}} {f}\left({x}\right){dx}\:\:. \\ $$

Commented by abdo imad last updated on 27/Feb/18

let complete the work of sir mrw_2   with f(x)=(1/(3x))sin(x−(1/x)) we have  ∫_(1/e) ^e f(x)dx=(1/3)∫_(1/e) ^e  (1/x)sin(x−(1/x))dx  let use the ch.x=(1/t)⇒  3 ∫_(1/e) ^e  f(x)dx= −∫_(1/e) ^e  t sin((1/t)−t)((−dt)/t^2 )=∫_(1/e) ^e  t sin((1/t)−t)dt  =−∫_(1/e) ^e  t sin(t−(1/t))dt=−3 ∫_(1/e) ^e f(x)dx ⇒  6 ∫_(1/e) ^e  f(x)dx ⇒ ∫_(1/e) ^e f(x)dx=0  ( if we work in a corps  with carecteristic ≠6)

$${let}\:{complete}\:{the}\:{work}\:{of}\:{sir}\:{mrw}_{\mathrm{2}} \\ $$$${with}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{3}{x}}{sin}\left({x}−\frac{\mathrm{1}}{{x}}\right)\:{we}\:{have} \\ $$$$\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} {f}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{3}}\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \:\frac{\mathrm{1}}{{x}}{sin}\left({x}−\frac{\mathrm{1}}{{x}}\right){dx}\:\:{let}\:{use}\:{the}\:{ch}.{x}=\frac{\mathrm{1}}{{t}}\Rightarrow \\ $$$$\mathrm{3}\:\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \:{f}\left({x}\right){dx}=\:−\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \:{t}\:{sin}\left(\frac{\mathrm{1}}{{t}}−{t}\right)\frac{−{dt}}{{t}^{\mathrm{2}} }=\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \:{t}\:{sin}\left(\frac{\mathrm{1}}{{t}}−{t}\right){dt} \\ $$$$=−\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \:{t}\:{sin}\left({t}−\frac{\mathrm{1}}{{t}}\right){dt}=−\mathrm{3}\:\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} {f}\left({x}\right){dx}\:\Rightarrow \\ $$$$\mathrm{6}\:\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \:{f}\left({x}\right){dx}\:\Rightarrow\:\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} {f}\left({x}\right){dx}=\mathrm{0}\:\:\left(\:{if}\:{we}\:{work}\:{in}\:{a}\:{corps}\right. \\ $$$$\left.{with}\:{carecteristic}\:\neq\mathrm{6}\right) \\ $$

Commented by ajfour last updated on 28/Feb/18

Thank you Sir.

$${Thank}\:{you}\:{Sir}. \\ $$

Answered by mrW2 last updated on 27/Feb/18

2f(x)+f(−x)=(1/x)sin (x−(1/x))    ...(i)  ⇒2f(−x)+f(x)=−(1/x)sin (−x+(1/x))   ...(ii)  2(i)−(ii):  3f(x)=(2/x)sin (x−(1/x))−(1/x)sin (x−(1/x))  ⇒f(x)=(1/(3x))sin (x−(1/x))  ∫_(1/e) ^(  e) f(x)dx=(1/3)∫(1/x)sin (x−(1/x))dx  let u=x−(1/x)  u^2 =x^2 +(1/x^2 )−2  u^2 +4=x^2 +(1/x^2 )+2=(x+(1/x))^2   (√(u^2 +2^2 ))=x+(1/x)  du=(1+(1/x^2 ))dx=(x+(1/x))(dx/x)=(√(u^2 +2^2 )) (dx/x)  (dx/x)=(du/(√(u^2 +2^2 )))  ∫_(1/e) ^(  e) f(x)dx=(1/3)∫(1/x)sin (x−(1/x))dx  =(1/3)∫_((1/e)−e) ^(e−(1/e)) ((sin u)/(√(u^2 +2^2 ))) du  =(1/3)∫_((1/e)−e) ^0 ((sin u)/(√(u^2 +2^2 ))) du+(1/3)∫_0 ^(e−(1/e)) ((sin u)/(√(u^2 +2^2 ))) du  =−(1/3)∫_0 ^(e−(1/e)) ((sin u)/(√(u^2 +2^2 ))) du+(1/3)∫_0 ^(e−(1/e)) ((sin u)/(√(u^2 +2^2 ))) du  =0

$$\mathrm{2}{f}\left({x}\right)+{f}\left(−{x}\right)=\frac{\mathrm{1}}{{x}}\mathrm{sin}\:\left({x}−\frac{\mathrm{1}}{{x}}\right)\:\:\:\:...\left({i}\right) \\ $$$$\Rightarrow\mathrm{2}{f}\left(−{x}\right)+{f}\left({x}\right)=−\frac{\mathrm{1}}{{x}}\mathrm{sin}\:\left(−{x}+\frac{\mathrm{1}}{{x}}\right)\:\:\:...\left({ii}\right) \\ $$$$\mathrm{2}\left({i}\right)−\left({ii}\right): \\ $$$$\mathrm{3}{f}\left({x}\right)=\frac{\mathrm{2}}{{x}}\mathrm{sin}\:\left({x}−\frac{\mathrm{1}}{{x}}\right)−\frac{\mathrm{1}}{{x}}\mathrm{sin}\:\left({x}−\frac{\mathrm{1}}{{x}}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{3}{x}}\mathrm{sin}\:\left({x}−\frac{\mathrm{1}}{{x}}\right) \\ $$$$\int_{\mathrm{1}/{e}} ^{\:\:{e}} {f}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\mathrm{1}}{{x}}\mathrm{sin}\:\left({x}−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$$${let}\:{u}={x}−\frac{\mathrm{1}}{{x}} \\ $$$${u}^{\mathrm{2}} ={x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\mathrm{2} \\ $$$${u}^{\mathrm{2}} +\mathrm{4}={x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\mathrm{2}=\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} \\ $$$$\sqrt{{u}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }={x}+\frac{\mathrm{1}}{{x}} \\ $$$${du}=\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){dx}=\left({x}+\frac{\mathrm{1}}{{x}}\right)\frac{{dx}}{{x}}=\sqrt{{u}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }\:\frac{{dx}}{{x}} \\ $$$$\frac{{dx}}{{x}}=\frac{{du}}{\sqrt{{u}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }} \\ $$$$\int_{\mathrm{1}/{e}} ^{\:\:{e}} {f}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\mathrm{1}}{{x}}\mathrm{sin}\:\left({x}−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\frac{\mathrm{1}}{{e}}−{e}} ^{{e}−\frac{\mathrm{1}}{{e}}} \frac{\mathrm{sin}\:{u}}{\sqrt{{u}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }}\:{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\frac{\mathrm{1}}{{e}}−{e}} ^{\mathrm{0}} \frac{\mathrm{sin}\:{u}}{\sqrt{{u}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }}\:{du}+\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{{e}−\frac{\mathrm{1}}{{e}}} \frac{\mathrm{sin}\:{u}}{\sqrt{{u}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }}\:{du} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{{e}−\frac{\mathrm{1}}{{e}}} \frac{\mathrm{sin}\:{u}}{\sqrt{{u}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }}\:{du}+\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{{e}−\frac{\mathrm{1}}{{e}}} \frac{\mathrm{sin}\:{u}}{\sqrt{{u}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }}\:{du} \\ $$$$=\mathrm{0} \\ $$

Commented by abdo imad last updated on 27/Feb/18

sir you are more near from value look that  (1/e)−e=−(e−(1/e)) and the function  u→((sinu)/(√(u^2  +4))) is odd so  ∫(...)du=0.

$${sir}\:{you}\:{are}\:{more}\:{near}\:{from}\:{value}\:{look}\:{that} \\ $$$$\frac{\mathrm{1}}{{e}}−{e}=−\left({e}−\frac{\mathrm{1}}{{e}}\right)\:{and}\:{the}\:{function}\:\:{u}\rightarrow\frac{{sinu}}{\sqrt{{u}^{\mathrm{2}} \:+\mathrm{4}}}\:{is}\:{odd}\:{so} \\ $$$$\int\left(...\right){du}=\mathrm{0}. \\ $$

Commented by mrW2 last updated on 27/Feb/18

thank you sir!  I didn′t look at the range of values.  I was concentriated in how to solve  the integral. It is hard indeed.

$${thank}\:{you}\:{sir}! \\ $$$${I}\:{didn}'{t}\:{look}\:{at}\:{the}\:{range}\:{of}\:{values}. \\ $$$${I}\:{was}\:{concentriated}\:{in}\:{how}\:{to}\:{solve} \\ $$$${the}\:{integral}.\:{It}\:{is}\:{hard}\:{indeed}. \\ $$

Commented by mrW2 last updated on 27/Feb/18

Can we solve it, if the question is  find ∫f(x)dx ?

$${Can}\:{we}\:{solve}\:{it},\:{if}\:{the}\:{question}\:{is} \\ $$$${find}\:\int{f}\left({x}\right){dx}\:? \\ $$

Commented by prof Abdo imad last updated on 28/Feb/18

perhaps i will try...

$${perhaps}\:{i}\:{will}\:{try}... \\ $$

Commented by ajfour last updated on 28/Feb/18

Thank you Sir.

$${Thank}\:{you}\:{Sir}. \\ $$

Commented by abdo imad last updated on 28/Feb/18

because you are familiar with dangerous roads like me....

$${because}\:{you}\:{are}\:{familiar}\:{with}\:{dangerous}\:{roads}\:{like}\:{me}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com