Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 30875 by Tinkutara last updated on 27/Feb/18

Commented by ajfour last updated on 28/Feb/18

sorry, its just (3) that is incorrect.

$${sorry},\:{its}\:{just}\:\left(\mathrm{3}\right)\:{that}\:{is}\:{incorrect}. \\ $$

Answered by ajfour last updated on 28/Feb/18

tan θ=(y/x)=3t    ⇒  y^2 =9t^2 x^2   r^2 =x^2 +y^2 =4t^2 (1+9t^2 )  ⇒  x^2 +y^2 =((4y^2 )/(9x^2 ))(((x^2 +y^2 )/x^2 ))  ⇒   y^2 =(9/4)x^4    or  y=(3/2)x^2     ....(i)  (considering the upward parabola)  since  y=3tx      x = 2t   ,   y = 6t^2      v_x = 2   ,  a_x =0     v_y = (dy/dt) = 12t    ⇒   a_y = 12    initial speed = (√(v_(x0) ^2 +v_(y0) ^2 )) =2m/s  initial rate of speeding is     initial tangential acceleration  Now  at  t=0 , v^�  = 2i^�   while  a^�  = 12j^�   so no initial tangential acceleration.  as  a_t = ((a^� .v^� )/(∣v^� ∣)) = 0  at t=0  .  (v^2 /ρ) = a_(normal)      (ρ is radius of curvature)  so   ρ = (v^2 /a_(normal) )   at  t=0  we have min. radius of  curvature since v is minimum  and a_(normal)    the maximum  ρ_(minimum)  = (4/(12)) = (1/3)  but ρ_(maximum)  → ∞   since as  time proceeds  v keeps increasing   while a_(normal )  keeps decreasing .

$$\mathrm{tan}\:\theta=\frac{{y}}{{x}}=\mathrm{3}{t}\:\:\:\:\Rightarrow\:\:{y}^{\mathrm{2}} =\mathrm{9}{t}^{\mathrm{2}} {x}^{\mathrm{2}} \\ $$$${r}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}{t}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{9}{t}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\frac{\mathrm{4}{y}^{\mathrm{2}} }{\mathrm{9}{x}^{\mathrm{2}} }\left(\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow\:\:\:{y}^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{4}}{x}^{\mathrm{4}} \:\:\:{or}\:\:{y}=\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} \:\:\:\:....\left({i}\right) \\ $$$$\left({considering}\:{the}\:{upward}\:{parabola}\right) \\ $$$${since}\:\:{y}=\mathrm{3}{tx} \\ $$$$\:\:\:\:{x}\:=\:\mathrm{2}{t}\:\:\:,\:\:\:{y}\:=\:\mathrm{6}{t}^{\mathrm{2}} \\ $$$$\:\:\:{v}_{{x}} =\:\mathrm{2}\:\:\:,\:\:{a}_{{x}} =\mathrm{0} \\ $$$$\:\:\:{v}_{{y}} =\:\frac{{dy}}{{dt}}\:=\:\mathrm{12}{t}\:\:\:\:\Rightarrow\:\:\:{a}_{{y}} =\:\mathrm{12} \\ $$$$\:\:{initial}\:{speed}\:=\:\sqrt{{v}_{{x}\mathrm{0}} ^{\mathrm{2}} +{v}_{{y}\mathrm{0}} ^{\mathrm{2}} }\:=\mathrm{2}{m}/{s} \\ $$$${initial}\:{rate}\:{of}\:{speeding}\:{is} \\ $$$$\:\:\:{initial}\:{tangential}\:{acceleration} \\ $$$${Now}\:\:{at}\:\:{t}=\mathrm{0}\:,\:\bar {{v}}\:=\:\mathrm{2}\hat {{i}} \\ $$$${while}\:\:\bar {{a}}\:=\:\mathrm{12}\hat {{j}} \\ $$$${so}\:{no}\:{initial}\:{tangential}\:{acceleration}. \\ $$$${as}\:\:{a}_{{t}} =\:\frac{\bar {{a}}.\bar {{v}}}{\mid\bar {{v}}\mid}\:=\:\mathrm{0}\:\:{at}\:{t}=\mathrm{0}\:\:. \\ $$$$\frac{{v}^{\mathrm{2}} }{\rho}\:=\:{a}_{{normal}} \:\:\:\:\:\left(\rho\:{is}\:{radius}\:{of}\:{curvature}\right) \\ $$$${so}\:\:\:\rho\:=\:\frac{{v}^{\mathrm{2}} }{{a}_{{normal}} }\: \\ $$$${at}\:\:{t}=\mathrm{0}\:\:{we}\:{have}\:{min}.\:{radius}\:{of} \\ $$$${curvature}\:{since}\:\boldsymbol{{v}}\:{is}\:{minimum} \\ $$$${and}\:{a}_{{normal}} \:\:\:{the}\:{maximum} \\ $$$$\rho_{{minimum}} \:=\:\frac{\mathrm{4}}{\mathrm{12}}\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${but}\:\rho_{{maximum}} \:\rightarrow\:\infty\:\:\:{since}\:{as} \\ $$$${time}\:{proceeds}\:\:{v}\:{keeps}\:{increasing}\: \\ $$$${while}\:{a}_{{normal}\:} \:{keeps}\:{decreasing}\:. \\ $$

Commented by Tinkutara last updated on 01/Mar/18

Thank you very much Sir! I got the answer.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com